AD-A253 070 . |
R
NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC

ELECTE i
JUL 20 19528

- 5
ol .
.
S e e .

THESIS

PRIVATE AND SHARED DATA
IN
OBJECT-ORIENTED PROGRAMMING
by
Vassilios Theologitis

March, 1992

Thesis Advisor: Michael L. Nelson

Approved for public release; distribution is unlimited.

ﬁ 92-19048
92 7 17 056 T

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

a. REPORT SECURITY CLASS O! UNCLASSIFIED 1b. RES TRICTIVE MARKINGS
a ORIV CIASS) BN AUTHOT 3. DISTRIBUTIONAVAILABILITY OF REPORT
A —— Approved for public release;
b. DECLASS ONDG AL o distribution is unlimited
PERFORMING GRGANIZATION REPORT NUMBEFTS) T WONITORING OFEANIZATION REPORT NOMBERS)
53. NANME OF FERFORMNG ORGANIZATION ~OFFICE a
omputer Science Dept. (i apphcable) Naval Postgraduate School
«] Naval Postgraduate School &
6c. ADDRESS (City, State, and ZIP Code) 7. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 939435000
. ORGANIZATION (it appicable)
8¢. ADDRESS (City, Stats, and ZIP Code) 10, 3 ‘
PROGHAM ___ JPROJECT _ TTASK _ [WORKONT |
ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (include Security Classification)
PRIVATE AND SHARED DATA IN OBJECT-ORIENTED PROGRAMMING

[PERSONATL AUTHOR
assilios Theologitis

. TYPE QEREPOR [136. TIME COVERED 14_DATE OF REPORT (Year, Month, Day) | 15. PAGE COUNT
aster’s Thesis FroM 01/90 T0.03/92 1992, March, 19 176

5. SUPFLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

17 COSATI CODES 18. S.UBJECT }’ERMS {Continue on reverse if necessary and identify by block number)
TED SROUP SUB.GROUP Object-Oriented, shared data,concurrency, distributed systems

19. ABSTRACT {Continue on reverse if necessary and identify by block number)
In a typical object-oriented system, there are two kind of variables: those which are private to instances(objects) and those

which are shared by all instances of a class. Variables may also be declared in some object-oriented languages as private, public,
or subtype visible which affects the acess to the data. However we know of no object-oriented programming which allows
data(variables) to be daclared as private for specific methods only. The purpose of this thesis is to propose a solution to the
problems of implementing and maintaining both shared and private data at various levels within an object-oriented
environment..

SRV Y OF RESTRACT :
[3 UNCLASSIFIEDTUNLIMITED [] SAMEAS RPT. [] DTIC USERS UNCLASSIF]ED

T08) a0 Do e C) TG e

DD FORM 1473, 84 MAR 83 APR adition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsuiete UNCLASSIFIED
: i

Approved for public release; distribution is unlimited

PRIVATE AND SHARED DATA
IN
OBJECT-ORIENTED PROGRAMMING

by
Vassilios Theologitis
Lieutenant, Hellenic Navy
B.S., Hellenic Naval Academy, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1992

Author:

wwowny STAML L

Michacl L7 Nelson, Thesis Advisor

-

es, SIond Reader

Lr\;_

Robe hee, Chairman,
Department of Computer Science

ABSTRACT

In a typical object-oriented system, there are two kind of variables: those
which are private to instances(objects) and those which are shared by all instances
of a class. Variables may also be declared in some object-oriented languages as
private, public, or subtype visible which affects the access to the data. However
we know of no object-oriented programming which allows data(variables) to be
declared as private for specific methods only. The purpose of this thesis is to
propose a solution to the problems of implementing and maintaining both shared

and private data at various levels within an object-oriented environment.

S¥PIC GRATTTY INSPECTED 2

DTIC TAB
Unannounced
Justification

Accession Yor

RTIS GRAXI f
0O
o

By
Distribution/
Avallability Codes
\ tvail and/or
Dist Spoevial

R" |
‘gglll‘

TABLE OF CONTENTS

B. RESEARCHOBJECTIVESccciiiuununen...

C. ORGANIZATIONt

1. BasicConcepts itiiniiininnnn..
a. Classes i,

b. Objects........ i

(2) Instance Variables.

e. Private, Public, and Subtype Visibility

2. Properties of Object-Oriented Languages
a. Reusability...................................

(1) Instantiationc.cuu ...

iv

(2 Inheritanceo, 10

(3) Polymorphismcoounnn. 10

(4 Genericity i 11

b. Extensibility it 12

3. Object-Oriented Languages 12

a. ClassiccAda i i, 13

o 0 14

¢ Smalltalk e 15

d. ACtOr ... e e 17

B. CONCURRENT PROGRAMMING 18
1. Conventional Concurrency 18

a. MessagePassing, 19

b. Shared Variables 20

2. Concurrency in Object-Oriented Programming 20

C. DISTRIBUTED PROGRAMMING 21
1. Conventional Distributed Systems 21

2. Distributed Object-Oriented Programming 23

III. STUDYING VARIABLES IN OBJECT-ORIENTED SYSTEMS 24
A. SEQUENTIAL EXECUTIONciiitivnnnn. 26
1. Classes Without Inheritance Relation 26

a. ClassVariable vt 28

b. Instance Variablescoiiiinn... 30

2. Classes With Inheritance Relation 32

a. ClassVariables, 32

b. Instance Variables 34

3. Sequential ExecutionSummary 36

B. CONCURRENT EXECUTIONciiiiiniiininnn 37
1. Concurrency In A Uniprocessor Environment 38

a. ClassVariable 38

b. Instance Variable, 40

2. Concurrency in a Multiprocessor Environment 41

3. OOPInAParallel System 41

a. Transputer i .. 43

(1) Communication 43

(2) Memory i 43

b. Two Objects, Each On Separate Transputers 43

4. Concurrent Execution Summary 46

IV. METHOD VARIABLES i 47
A. METHOD VARIABLES i, 49
1. Method Instance Variables 50

2. Method Class Variables 51

B. SEQUENTIAL EXECUTIONcciiiiinnnnnn 54

vi

1. Method Instance Variables 54

2. Method Class Variables 59

C. CONCURRENTEXECUTIONciiiiniinn.. 62

1. Concurrency In a Uniprocessor Environment 62

a. Method Instance Variables 62

b. Method Class Variables 64

2. Concurrency In a Distributed Environment 65

V. CONCLUSIONS AND RECOMMENDATIONS 66
A. SUMMARY AND CONCLUSIONS 66

B. RECOMMENDATIONS FOR FUTURE RESEARCH 67

APPENDIX A - SEQUENTIAL EXECUTION WITHOUT INHERITANCE . 68

A. CLASSVARIABLE......... i, 68
1. Alphaspec CVica 68
2. Alphabody CVica 69
3. Program_CV.oneca 70
4. Program_CV_onescript 71
5. Program_CV_two.ca i, 72
6. Program CV_twoscript, 73
B. INSTANCE VARIABLE o, 74
1. AlphaspecIV.ca i i, 74

vii

2. Alphabody IVca.......... ..., 75

3. Program_IV.ca i 76

4. Program_IV.script i i, 78
APPENDIX B - SEQUENTIAL EXECUTION WITH INHERITANCE 80
A. CLASSVARIABLEttt 80

1. Alphaspec CVica 80

2. Alphabody CVca i, 81

3. BetaspecCV.ca 82

4. Betabody CV.ica i, 83

5. Program_CV_nherca 84

6. Program_CV_inherscript 87

B. INSTANCE VARIABLE ittt 89

1. Alphaspec_IV.ca il 89

2. Alphabody IVca.............. ... o i, 90

3. BetaspecIV.ica i, 91

4. Betabody IV.ca il 92

5. Program_IV_inherca 93

6. Program_IV_inherscript, 95
APPENDIX C - CONCURRENCY ON A UNIPROCESSOR 97
A. CLASSVARIABLEttt 97

viii

1. AlphaspecCVica i, 97

2. Alphabody CVcaciiiiiiiiinnnenn.. 98

3. Program_ CV_conccaciiininiinnnn., 99

4. Program_CV_concscript, 101

B. INSTANCEVARIABLEciiiiininen. 102

1. AlphaspecIVca Ll 102

2. Alphabody IVica............. 103

3. Program_IV_conccaiiiiiiiiiiiin.. 104

4. Program_IV_concscripto 106
APPENDIX D - CONCURRENCY ON A MULTIPROCESSOR 107
A. TWO TRANSPUTERS WITH CLASS VARIABLE 107

1. Alphaspec CVica 107

2. Alphabody CVca 108

3. Program CV_transcat 109

4. Alphaoneada, 110

5. Alpha_twoada il 111

6. Program_CV_transscript 113
APPENDIX E - METHOD INSTANCE VARIABLES 114
A. CLASSES WITHOUT INHERITANCE RELATION 114

1. Alphaspec_mivica i 114

ix

2. Alpha body mivca 115

3. Program_miv.ca, 117

4. Program_miv.script................ oL 119

B. CLASSES WITH INHERITANCE RELATION 121

1. Betaspec_mivica 121

2. Betabody mivca L 122

3. Program_miv_inherca L. 123

4. Program_miv_inherscript 126
APPENDIX F - METHOD CLASS VARIABLES 129
A. CLASSES WITHOUT INHERITANCE 129

1. Alphaspecmcvca.......... 129

2. Alphabody mcvica ... 130

3. Program_mcv.ca e 132

4. Program_mcvscript 134

B. CLASSES WITH INHERITANCE RELATION 136

1. Beta_specomev.ca i 136

2. Betabody mevca............ i, 137

3. Program_mcv_inher.ca R Ry 138

4. Program_mcv_inherscript 141
APPENDIX G - CONCURRENCY WITH METHOD VARIABLES 144

A. METHOD CLASS VARIABLE 144

1. AlphaspecCV.ca 144

2. Alphabody CV.ca, 145

3. Program_mcv_oonc.ca.............c0iiiinninn... 147

4. Program_mcv_concscript i 149

B. METHOD INSTANCEVARIABLE 151

1. Alphaspecmivca 151

2. Alpha body miveca 152

3. Program_miv_concca, 154

4. Program_miv_concscript oL 156
LISTOFREFERENCES 158
INITIAL DISTRIBUTION LIST 162

LIST OF FIGURES

Figure 1 Class Alpha and Beta Definitions 25
Figure 2 Representation of the Classes and their Instances 27
Figure 3 Class Alpha Definition 28
Figure 4 Class Alpha Definition 31
Figure 5 Class Alpha and Beta Definitions 32
Figure 6 Class Alpha and Beta Definitions 34
Figure 7 Distributed and Shared Resource Systems 42
Figure 8 The Ciass “efinition with Method Variables 50
Figure 9 Method Instance Variable Accessibility in Class Alpha 52
Figure 10 Method Class Variable Accessibility in Class Alpha 53
Figure 11 Class Alpha with Method Instance Variables 55
Figure 12 The Classes Definition, 57
Figure 13 Class Alpha with Method Class Variables 59
Figure 14 Classes Alpha and Beta Definition 61

xii

ACKNOWLEDGEMENTS

Completing this thesis, I would like to express my sincere appreciation and
gratitude to my advisor, Dr. Michael L. Nelson, for his assistance and guidance.
I dedicate this thesis to my wife, Mimi, for her great help, support, and
encouragement during all this period, including late nights and weekends that
were spent in writing this thesis. Finally a special thanks is due to the Hellenic

Navy for giving me this opportunity to study at the Naval Postgraduate School.

I. INTRODUCTION

A. BACKGROUND

Object-oriented programming (OOP) is a new approach to programming.
Many people believe that OOP is the future of programming languages and also
that it can improve the development of software. The main reason for this
evolution of programming languages is the necessity of the human mind to be
able to express ideas, and also to be able to more easily model real world
activities with a computer program. Ever since the first computer languages
appeared, the human mind has always tried to find ways to express thoughts
and ideas more easily. This is the main reason why man builds newer high level
languages every day which are closer to his way of thinking.

Thus OOP is rapidly becoming a popular approach to the construction of
complex software systems. Benefits of object-orientation include support for
modular design, code sharing, reuse, and extensibility.

The main purpose of this research is to observe different types of variables
in object-oriented programming in different kinds of environments. The initial
starting point for this research stems from the problems encountered during the
development of an object-oriented model of the software controller of the Naval

Postgraduate School (NPS) Autonomous Underwater Vehicle (AUV) [BN91]. The

C. ORGANIZATION

The remainder of this thesis is divided into four chapters. Chapter II
introduces the basic concepts of object-oriented programming, concurrency, and
distributed systems. Chapter Il investigates variables in an object-oriented
programming environment with a special attention to sharing data. In Chapter
IV, various solutions are suggested. Chapter V contains the conclusions and
recommendations for future research. The computer code developed during the

course of this thesis is contained in Appendices A through G.

II. BACKGROUND

In this chapter we survey the literature on object-oriented concepts,

concurrency, and distributed systems.

A. OBJECT-ORIENTED CONCEPTS

1. Basic Concepts
In this section we give a brief description of the basic concepts of object-
oriented programming. Since this area is still relatively young, there are no
standard definitions yet within the object-oriented community [Nel90a). However

the following basic concepts are found in most object-oriented languages.

a. Classes

"Objects which share the same behavior are said to belong to the
same class" ((WWW90]: pp.22). A class defines a group of similar objects with the
same structure and behavior. Any object generated from a given class has the
same set of information (the structure) and abilities (the behaviors). The structure
of a class is represented by the variables, and the behavior is represented by the
methods existing for each class.

A brief (but good) description of a class is given in the following

statement:

"Class is indeed the technical term that will be applied in object-
oriented languages to describe such sets of data structures characterized by
common properties." ((Mey88]: pp.52)

We can picture a class as a factory that produces products with the
same main properties, with no limits to the number of products. We cannot have
two objects with different structures within the same class. For example, consider
a class car; it can be thought of as vehicle factory that produces a certain car
model. All objects of the class have the same structure.

Classes can be related to one another by inheritance; we say that
a subclass inherits the structure and behaviors (i.e., the variables and methods)
of its superclass. The subclass may, in turn, serve as the superclass for another
subclass. This leads to a hierarchy of classes in which we can talk about ancestor

and descendant classes. This will be discussed further in Section 2.

b. Objects
An object is an instance of a class. Objects that belong to the same
class have common structures and behaviors. Actually, we can say that the object
is the first and main element in object-oriented programming because when we
start thinking about how to define the class we first try to specify and categorize
each needed object. Several objects from the same class can exist at the same
time, and all of them have the same main properties. As we will see later, these

are the variables and methods.

Referring to our previous example, the class car can be used to
produce several instances, each with the same basic structure and set of
behaviors. Owur_car, a particular car with our options (color, whether it is
automatic, etc.), is an instance of the class car. Since an object is generated from
a class, the variables and the methods of the class exist for every object. That is,
our_car will have the same set of variables and methods that every other instance

of the class car has.

¢. Methods

The operations or procedures that an object knows how to perform
are called methods. A method is similar to a function definition or procedure call
in conventional languages. A method deals only with objects of the class within
which it is contained (defined), and can be activated only by sending a message
to the object. A message consists of the name of a method along with any
required arguments including the name of the object and any parameters. Each
time an object receives a message it performs the requested operation by
executing the appropriate method.

Another definition of method is that it is the step by step algorithm
executed in response to the received message where the name in the message
matches the name of the method [WWW90]. Sending a message is more general
than calling a function because different objects can respond to the same message

in different ways; as we will see later, this is known as polymorphism.

In our car example, we might have the method start_engine
defined for the car class. We could then send this message to our_car in order
to start its engine.

Methods can be categorized as either class methods or instance
methods. Messages sent to a class cause a class method to be executed while

messages sent to objects cause an instance method to be executed.

d. Variables
There are two kinds of variables in an object-oriented language:

class variables and instance variables.

(1) Class Variables. "A class variable is shared both in name and
value by all instances of a class" ((Nel91a]): pp.4). We can consider these variables
to be global for any object of that particular class.

For example, in our car class we could have the class variable
number_of_wheels which is the same for every instance (object) of this class.
This variable is the same for every object. Therefore, if it were to change, all

objects immediately change as they all share access to this same class variable.

(2) Instance Variables. "An instance variable is shared in name
only, not in value, by all instances of a class" ([Nel91al: pp.4). Whereas class
variables can be thought of as global to all the instances of a class, instance

variables can be considered as the private data of each object.

In our example car class we could have the instance variable
serial_number. All car objects will have this variable, but the value for each

object is different.

e. Private, Public, and Subtype Visibility
Both variables and methods can be divided into three categories
which define their visibility to subclasses and end-users. These three categories

are as follows:

¢ Public
e Private

¢ Subtype visible

When a variable or method is declared to be public we mean that
anyone has access to it from inside or outside the class. A public variable may
have the additional attributes of read-only or writable outside the owner class
(i.e., anyone may be able to read it, but they may not be able to change it). When
we declare a method to be public we also mean that it is a part of the published
or public interface. We must point out here that since public variables and
methods can be accessed by anyone, it can be very costly to change them [RB91].

The private property is_the opposite of public. When we declare
data or methods to be private we mean that they can only be reached by methods

declared within that class. Private methods and variables are internal to a class.

Therefore we can modify them or even delete them more easily as this will only
impact other methods of the same class.

Subtype-visible is something between these two extremes.
Subtype-visible variables or methods can be reached only by methods declared
inside the same class or its descendant classes. End-users, however, cannot

directly access these variables or methods.
2. Properties of Object-Oriented Languages

a. Reusability
"Reusability is the ability of a system to be reused, in whole or in
part in order to construct a new system” ([Mic88]: pp.13). Reusability is one of
the major advantages of object-oriented languages because it reduces the cost of

designing, coding, and testing.

(1) Instantiation. This term is used in object-oriented languages
when we generate an instance (object) of a class. When we say instatiate we
mean that we create a new object of a class. Every time we instatiate an object
we are reusing the class definition. That is, each time that we instatiate an object
a class serves as a template which provides the variables and methods.

In object-oriented programming we can have statically or
dynamically instantiated objects. Statically instantiated objects must be
declared/instantiated at compile time, whereas dynamically instantiated objects

may be instantiated at run time.

(2) Inheritance. "Inheritance can be defined simply as a code
sharing mechanism” ([Nel91a]: pp.5). An inherited class may be defined as an
extension or restriction of another class [Mey88]. In other words, inheritance
allows us to reuse the definition of a previous class in the creation of a new one.
This new class is called a subclass of the first one, which is called the superclass.
In the case that we can inherit from only a single class we have a simple or single
inheritance. If, on the other hand, we can inherit from many classes we have
multiple inheritance (MI).

What about inherited class variables in the subclass? There
are two different aspects in the way that class variables can be implemented in
inheritance. The first notion implements the class variable as a global variable for
all classes related by inheritance, which implies the ability to change the value
from any class. That is, a single class variable is shared by all the classes related
by inheritance. Alternatively, changing a value in any class does not modify the
value of the other classes related by inheritance. That is, the class variable is in

effect duplicated for each new subclass. [Nel90a]

(3) Polymorphism. "Polymorphism (sometimes called operator
overloading or function overloading) can be defined as allowing different data
types (classes) to have methods (routines) with the same name which may be
implemented differently” ([Nel90a]: pp4). The ability of different objects to

respond to the same message is called as polymorphism. Even when the same

10

message is sent from the same place in code, it can invoke different methods,
depending on the object it is sent to [SB86].

There are two forms of polymorphism: simple polymorphism
and multiple polymorphism [Nel90a, Mic88]. With simple polymorphism, each
class may have its own implementation of an operation. With multiple

polymorphism, a single class may have several operations with the same name.

(4) Genericity. "Genericity is the ability to parameterize modules.
The need for this facility is particularly clear for classes representing general data
structures: arrays, lists, trees, matrices etc" ((Mey88]: pp.104). One common form
of genericity is the abstract data type (ADT). An ADT is a data structure with a
set of associated operators in which the implementation details are hidden,
allowing the user to reference the ADT with implementation-independent code.
This allows the physical implementation of the ADT to be changed without
affecting the user-written code. Since the class definition is a form of an ADT, the
class itself represents one form of genericity. [Nel91a]
The generic module is a module pattern and is not directly
usable. Instances of the generic module are obtained by providing real types for
each of the generic parameters. It is a technique that is used to avoid some of the

requirements of static type checking.

11

b. Extensibility
Extensibility is the facility in a software system to change or
modify anything we need in accordance with our requirements in order to
produce a new class from an existing one. This is achieved through the use of
inheritance in object-oriented languages.
Extensibility is easy when dealing with small and simple programs,
but is more difficult in larger programs. Thus, the problem of extensibility is a
problem of scale because as the programs grow larger, the problem of adaptation
also becomes harder [Mey88].
There are two principles essential to improve extensibility in the
designing of classes [Mey88]:
* Design simplicity: it is easier to adapt changes when we have a simple
structure in a class rather than a complex one.

* Decentralization: we have more possibilities that the changes will be in one
class and will not affect a chain reaction of changes over the whole system.

3. Object-Oriented Languages
Object-oriented languages can be categorized into two families. The
first family contains those languages with the object-oriented features added to
an existing language, and we refer to this family as bolted-on languages. The
second family contains those languages which are designed and constructed
around the principles of object-oriented programming, and we refer to this family

as built-in languages.[Nel90a)

12

a. Classic-Ada

Classic-Ada [Sof89, NM92] is an object-oriented preprocessor for
Ada [Boo87). It is a preprocessor because it converts the programs written in the
Classic-Ada language into standard Ada, and the resulting programs are then
compiled with a standard Ada compiler. It adds to Ada the concepts and features
of an object-oriented language, including methods, objects, classes, and
inheritance (thus, Classic-Ada is a bolted-on object-oriented language).

Class definitions are divided into specifications and bodies, similar
to package specifications and bodies in Ada. The terminology and reserved
words used in Classic-Ada are very similar to the basic concepts of other object-
oriented languages. Classic-Ada supports single inheritance but does not support
multiple inheritance. Every class needs at least one method, the method create for
the creation of objects from this class; this method is a class method. If we want
to have a method by which objects of classes are reclaimed we need a second
method delete, which is an instance method. These are the only methods that we
cannot inherit from an ancestor class; they must be declared anew for each new
class.

Methods and variables are classified by the reserved word instance

if they are instance methods or instance variables. If they are class methods or

13

variables we do not put any reserved word before them as the default is a class
method or variable'.

Classic-Ada does not support the concepts of private, public, and
subtype visible. All variables are by default subtype-visible, and all methods are
public.

To accomplisn dynamic binding Classic-Ada uses the reserved
word send, which is a fairly cor..mon approach for many bolted-on object-oriented
languages [Nw1”.2].

Since Classic-Ada is an extension of the Ada Language, which does
support concurrer~y, a concurrent Classic-Ada program is therefore possible

[Nel91b].

b. C++
C++ [WP88] is an extension of the popular C language, adding
special features for object-oriented programming. Thus, C++ is a bolted-on
language. C++ was originally a preprocessor for the C language, but C++
compilers are now available.
C++ supports encapsulation, combining data abstraction with
methods to manipulate data into a class-type object. The reserved words class,

union, and struct are used for the declaration of a class. The major difference

'The Classic User's Manual [Sof89] does not specifically mention class
variables and class methods. This ‘feature’ was discovered through
experimentation.

14

between them is the accessibility of the members, because many versions of C++
language support the concepts of public, private, and protected (note that in C++
terminology, the term protected is used rather than subtype-visible). All versions
of C++ support single inheritance, and multiple inheritance is now supported in
some versions.

Polymorphism in C++ is accomplished by placing the reserved
word virtual before the functions (methods). Virtual functions allow you to use
many versions of the same function throughout a class hierarchy, with the
particular version to be executed being determined at run time.

Messages are sent to objects using a mechanism similar to that used
to invoke a function (object_name.function _name(argument)). Since C is a
pointer language we can also send a message with a pointer if we have a pointer
that points to an object (object_pointer -> function_name (argument)).

C++ provides a special type of member function with the reserved
word constructor. A constructor specifies how a new object of a class type will be
created. The deallocation of the memory is achieved with the method destructor.

C++ does not include any constructs for handling concurrency.

¢. Smalltalk
One of the first true object-oriented languages was Smalltalk
[Seb89]). According to our previously discussed classification of object-oriented

languages, Smalltalk is a built-in language.

15

Smalltalk is an interpretive language which uses an intermediate
compiler. As an interpretive language it provides rapid testing of incremental
changes to the image. Many problems can be solved by using or modifying
existing classes and methods.

All programming in Smalltalk is accomplished by sending
messages to objects. It supports three kinds of messages: unary, binary, and
keyword. Smalltalk supports both class and instance methods.

Smalltalk variables come in two varieties. The first is private
which means they are local to an object, and the second is shared which means
they are visible outside the object in which they are declared. Determination in
the program is achieved by using lower or uppercase letters. Private variables
must begin with lowercase letters, while shared variables begin with uppercase
letters.

Inheritance in Smalltalk is also supported. However, only a single
hierarchy is supported, and all classes must be descendants of the root class
object. We have the ability to rename, modify, or add any inherited variable or
method.

Smalltalk includes a Fork’ construct, so we can run processes

concurrently. But we must point out that they are essentially run sequentially on

%Fork, is a control structure for indicating parallelism. It creates two
concurrent processes, one at label and one at statement following the Fork
statement.[Dei90]

16

a uniprocessor. The reason for this is that each process runs until finished or
stopped for a reason and then the next process starts to run, etc. A Yield
statement which is also provided by Smalltalk allows processes to yield to the
processor at any time, but true non-determinism is not possible in standard

Smalltalk. [SN90]

d. Actor

Actor® is very similar to Smalltalk, and Actor is also a built-in
object-oriented language. Actor is an interpretive language which provides rapid
testing of incremental changes to the image. Many applications can be built by
using or modifying existing classes and methods.

Inheritance is also supported in Actor. Like Smalltalk, only single
inheritance is supported, and all classes must be descendants of the root class
object. We have the ability to rename, modify, or add any inherited variable or
method.

Actor supports both class and instance methods and also class and
instance variables. Class variables must start with the sign ‘$’ and then follow
with the first letter being capitalized, instance variables must not capitalize the
first letter and there is no special character in front. Although Actor has global

variables that are similar to those in traditional languages, they are accessible

It should be realized that we are discussing the language Actor which is
registered trademark of the Whitewater Group, Inc. (a registered servicemark)
[Act90]). This language is not associated with the Actor model [Agh88].

17

from anywhere in the program. They are used most often during the testing of
the program.

Actor does not include any constructs for handling concurrency.

B. CONCURRENT PROGRAMMING

1. Conventional Concurrency

Concurrent execution is conventionally viewed in terms of autonomous
sequential processes executing in parallel [BLW87]. In concurrency we usually
deal with processes which may run at the same time. These processes may run
separately from one another, which means that there is no exchange of
information between the processes. Each one starts and stops processing without
waiting on the others for any reason.

It is also possible that we need some level of cooperation between the
processes. This case is called asynchronous, which means that the processes may
require occasional synchronization and cooperation [Dei90].

Thus the correct behavior of a concurrent program is dependent upon
the necessary synchronization and communication between its processes.
Synchronization is concerned with the action(s) that have to occur in one process
before an action of another process. Communication deals with the information
passing between processes.

The problems we need to solve in a concurrent programming

environment include the following:

18

a. Message Passing
Message passing is simply a way of passing information from one
process to another. Message passing between two processes involves four issues

[BLWS87]. These four issues are:

® process naming
¢ synchronization
® message structure

¢ failure on communication

Process naming deals with the address that a message is sent to.
We can directly address the process that is going to receive a message.
Alternatively, we can just name the channel or the communication port where the
message is to be sent, and it is assumed that the receiver will eventually receive
the message. The first case has the advantage of simplicity, and the disadvantage
that we cannot change the receiver of the message at run-time. The second case
has the advantages that we can change the message destination at the run-time,
or we can have an anonymous process as a receiver.

Synchronization is the need for the mutual acknowledgement
between the sender and receiver of a message. When the sender continues
executing immediately after sending the message we have asynchronous message
passing. When the sender waits (i.e., is blocked) until the receiver accepts the

message we have synchronous message passing.

19

Virtually any data structure can be transmitted within a message,
possibly subject to size limitations imposed by the system.
The necessity of handling a communication failure is more of a

necessity in networks and distributing systems.

b. Shared Variables
Shared variables in concurrent programs are the case in which we
have data shared between different processes. When one process accesses the
shared variable, we must keep any other process wishing to do the same from
doing so until the first process finishes access to the shared variable'. We say
that each process requires exclusive access, which is referred to as mutual
exclusion. When a process is accessing shared data it is said to be in a critical

section, and the shared data is often called critical data. [Dei90]

2. Concurrency in Object-Oriented Programming
In the real world many things exist and do things concurrently. Object-
oriented programming systems show great potential for use in designing and
building concurrent systems as many objects can exist and do things
concurrently. [Nel90c]
In concurrent object-oriented programming there are many ways that

we can have concurrency. Different objects could execute various methods at the

* Access to shared variables may also be modeled after the Readers and
Writers problem [Dei90]. This approach allows any number of readers (with no
active writer) or a single writer (with no active readers) at any point in time.

20

same time, different methods can be executing in the same object at the same
time, or a single object (instance) could be executing a single method which does
several things concurrently. Of course, these three possibilities can be combined -
that is, several objects, each executing several methods, each of which does
several things concurrently. [Nel90c]

Unfortunately, we still have most of the same problems that we have
with any concurrent language when we move into the object-oriented
environment. The major problem is in controlling the concurrent activities during
program execution.

Concurrency can be achieved in a computer system which has only a
single processor (i.e., a uniprocessor)’ or in a computer system which contains
two or more processors (i.e., a multiprocessor). In both cases we have to deal
with the messages that objects send to one another to achieve successful

execution.

C. DISTRIBUTED PROGRAMMING

1. Conventional Distributed Systems
A distributed computer system contains multiple autonomous
processing elements cooperating for a common purpose or to achieve a common

goal. Distributed systems can be divided into two main categories [BT88]:

* Obviously, we can only have simulated concurrency on a uniprocessor as
only one thing may execute at a time.

21

e tightly coupled: systems that have a common memory;

* loosely coupled: systems that do not have a common memory.

Note that communication between processes in a loosely coupled
system must be via some form of message passing. Thus, these two categories
can also be thought of as those which communicate through shared data, and
those which communication via message passing.

One efficient implementation for shared data in distributed system is
the use of replication [BT88). Another possibility is the use of the same
techniques that are used in concurrent systems, such as mutual exclusion,
monitoring, etc.

The most important differences between shared data and message
passing are as follows [BT88]:

1. The process sending a message must know some form of identity of the
receiver.

2. When making a new assignment there is a delay in sending the message
from one process to another; with shared data the assignment has an

immediate effect.

3. A message sent from one process to another is more secure than shared
data which is reachable by anyone.

4. To exchange messages between processes we may need synchronization.
However to access shared data we definitely need synchronization between
the processes (i.e., this is a classical mutual exclusion problem).

5. When passing a message it maybe difficult to pass a complex data
structure; with shared data this difficulty does not exist.

22

2. Distributed Object-Oriented Programming

The main goal in distributed object-oriented programming systems is
to establish a distributed object manager that allows several different systems to
share objects [BT88].

The development of distributed systems has been partly motivated by
the desire to extend the limited set of sharable resources of a particular computer
system to a large, possibly unlimited, set of network resources. Resource sharing
poses the problems of naming, protection, and consistency.

There are currently several development projects concentrating on high
performance system kernels for distributed systems. They all support a client-
server approach, in which the servers can manage data on behalf of external
clients. An alternative approach is to have direct invocation of (possibly remote)

objects. Each object is executed in its own virtual address space. [Hor90]

III. STUDYING VARIABLES IN OBJECT-ORIENTED SYSTEMS

In this chapter we analyze and define the sharing of variables in an object-
oriented environment. As discussed in Chapter II, a class consists of variables
which are defined in the class definition. The values of these variables have one
of the following properties: they are either shared between the instances (objects)
of a class or they are independent for each instance (object) of a class; that is, they
are either class variables or instance variables.

Before observing the variables and sharing of data in an object-oriented
system, it is first necessary to define the execution environment. We begin with
a brief description of the different terms to be used. Unfortunately, these terms
are often used in a rather confusing manner within the computer science
community - the same term may be used differently or different terms may be
used the same [Nel90c].

A process is the smallest part of a program which may be control’ ad as a
separate entity. A concurrent process is simply one which may be executed at the
same time as other concurrent processes. Multiprocessing is the ability to give the
appearance of executing two or more processes concurrently, regardless of the
number of processors involved. A parallel system is one which supports true

multiprocessing (i.e., two or more processors are used).

24

A uniprocessor is a computer system which has only a single processor. A
multiprocessor is one which contains two or more processors.

In this chapter we discuss the various types of execution in an object-
oriented programming environment and the results obtained with different types
of variables. We will classify the execution type as either sequential or
concurrent.

Figure 1° shows how class definitions can be presented in a language-
independent manner. In this example, the class Alpha has one class variable (cv),
one instance variable (iv), and three methods (Method_X, Method_Y, and
Method_Z). The class Beta defines no new variables or methods, but inherits all

of the variables and methods defined for the class Alpha.

Class Alpha
Superclass: none
Class variable: cv
Instance variable: iv
Methods: Method_X
Method_Y
Method_Z
Class Beta
Superclass: Alpha
Class variable: none
Instance variable: none
Methods: none

Figure 1 Class Alpha and Beta Definitions

The language -independent class definitions are modeled after those found
in [Nel90a].

We can define several instances (objects) for each class. For example,
objectAl, objectA2, and objectA3, for class Alpha; and objectBl, objectB2, and
objectB3 for class Beta.

Figure 2 gives one representation of the classes and their instances. The
classes are presented in this way as it is similar to block scoping diagrams used
for conventional language systems, and it makes the concept of sharing data in
an object-oriented environment more understandable. Note, however, that this
diagram does not show that a single class variable (cv) is shared by both Alpha
and Beta.

Several Classic-Ada programs have been generated to study various aspects
of variables. Various tests are conducted in both sequential and concurrent

modes of execution.

A. SEQUENTIAL EXECUTION

The term sequential execution is used in those cases where processes are
executed sequentially. Although sequential execution is the simplest case, the
effects of inheritance cannot be omitted. Thus, both classes with inheritance and

classes without inheritance are studied.

1. Classes Without Inheritance Relation
Classes without inheritance are simply ones which are not descended

from other classes. Thus, we will only consider a class Alpha.

26

Class Alpha
cv
Object Al Object A2 Object A3
v iv iv
Method_X Method_X Method_X
Method_Y Method_Y Method Y
Method_Z Method_Z Method_Z
Class Beta
cv
Object B1 Object B2 Object B3
v v v
Method_X Method_X Method_X
Method_Y Method_Y Method_Y
Method_Z Method_Z Method_Z

Figure 2 Representation of the Classes and their Instances

27

a. Class Variable
As discussed in Chapter II, a class variable is a variable shared by
name and value in both all instances (objects) of the class. To illustrate the use of
class variables in a sequential environment, we will define the class Alpha as

presented in Figure 3.

Class Alpha

Superclass: none

Class variable: cvl

Instance variable: none

Methods: Set_class_variable
Get_class_variable
Create
Delete

Figure 3 Class Alpha Definition

The method Set_class_variable sets the value of the class variable
(cv1), while the Get_class_variable returns its current value. The Create and
Delete methods are used to create and delete instances (objects) of the class.

The files giving the specification and implementation of the class
Alpha are Alpha_spec_CV.ca and Alpha_body_CV.ca’ The main program, which

creates instances of the class Alpha and manipulates them, is in the file

7 In Classic-Ada the declaration of a class requires two files. The first is the
specification file which defines the name of the class and the names and types of
its methods. The second is the body of the class where we specify the
implementation of the methods and also define the variables and their types.

28

program_CV_ one.ca and its output is in the file program_CV_onescript. All files
discussed in this section are contained in Appendix A, Section A.

This experiment was used to check the value of the class variable
for different instances (objects) in the same class. This was done to ensure that
the class variable was indeed shared in both name and value between different
instances of a class. We create several instances (objects) of the class Alpha and
then apply the methods in the following order.

First, we declare the object and create it as an instance (object) of
class Alpha using the Create method.

Second, we invoke the Get_class_variable method to get the current
value of the class variable for the instance. As can be seen in the output of the
program, the first time that we call the Get_class_variable method for the first
object the value is null since no value has been defined yet. For subsequent
instances (objects), the value is that given to the previously defined instance
(object).

Third, we invoke the Set_class_variable to set the class variable to
a specific value. For our program this can be any legal character.

Fourth, we again invoke the Get_class_variable to get the current
value of the class variable at this instance. As can be seen in the output, the
value of the class variable is equal to the character given in the Set_class_variable
method, as expected.

Finally, we invoke the Delete method to delete the instance.

29

Looking at the output, we can see that Classic-Ada implements
class variables as expected - they are shared in both name and value by all
instances of a class. Note that we delete each instance before creating the next.
These deletions have no effect on the class variable as it exists within the class
Alpha. Its value is maintained even after the instance that last set the value is
deleted.

As a further test, we run another program (program_ CV_two.ca)
with all the Delete messages for the instances of the class at the end of the
program. The output of this new main procedure is in the file program_CV_
two.script. In this way we keep the instances of the class Alpha ‘alive’ until the
end of the main procedure. As expected, however, this coexistence of all
instances does not change the previous results. It also shows that all instances see

the latest value of the class variable.

b. Instance Variables

An instance variable is shared in name only by all instances of a
class, as discussed in the last chapter. We now define the class Alpha as shown
in Figure 4 to test this feature. The files with the specification and
implementation of class Alpha are the Alpha_spec_IV.ca and Alpha_body_IV .ca. All
the files used in this section are included in Appendix A, Section B.

The main program file is program_IV.ca. Our goal here is to
observe the value responses of an instance variable through different instances of

a class. The output of the main procedure of the program is presented in the file

30

Class Alpha
Superclass: none
Class variable: ivl
Instance variable: none

Methods: Set_instance_variable
Get_instance_variable
Create
Delete
Figure 4 Class Alpha Definition

program_IV script. In this program we create several instances of class Alpha and
apply methods in the following order.

First, we create an object and then invoke the Get_instance_variable
method to get the current value of the instance variable for this instance. As
excepted, this returns a null value as objects are created without any initial or
default value for this variable.

Next, we invoke the Set_instance_variable to set the instance
variable with a value. Finally, we invoke the Get_instance_variable method to get
the current value of the instance variable, which is the value set by the previous
Set_ instance_variable method, as expected.

As can be seen in the output of this program, the values of the
instance variable of each instance are independent of all other instances of that

class. Indeed, instance variables are shared in name but not in value by all the

objects of a class.

31

2. Classes With Inheritance Relation
Remembering that inheritance is a sharing mechanism, we expect to have
some sharing of data between classes. Since we have code reuse in inheritance,
the reuse of a class implies that we share the names and the types of the existing

variables, and the names and parameters of the existing methods.

a. Class Variables
We will now use the classes Alpha and Beta as shown in Figure 5.
Notice that in Classic-Ada it is necessary to define the methods Create and Delete
for each class, even though it is appears that the methods should have been
inherited from superclass [NM92]. The class Beta inherits all other variables and

methods defined in the class Alpha.

Class Alpha
Superclass: none
Class variable: cvl
Methods: Set_class_variable
Get_class_variable
Create
Delete
Class Beta
Superclass: Alpha
Class variable: none
Instance variable: none
Methods: Create
Delete

Figure 5 Class Alpha and Beta Definitions

32

The files of class Alpha and Beta are Alpha_spec CV.ca and
Alpha_body_CV .ca, and the Beta_spec_CV.ca and Beta_body_CV .ca respectively. All
files used in this section are contained in Appendix B, Section A.

In this experiment we want to observe the response of class
variable thought the inheritance mechanism between different objects.The main
program is program_CV_inherca, and its output is contained in
program_CV_inher.script. Objects are created and manipulated in the following

order:

* First instance of class Alpha (object A1)
* First instance of class Beta (object B1)
* Second instance of class Alpha (object A2)

¢ Second instance of class Beta (object B2)

We then invoke messages in the following order.

First, we declare and create the objects.

Second, we invoke the Get_class_variable to get its current value.
As expected, the first time that we call the Get_class_variable method on the first
object the current value of class variable is null since we do not define any default
or initial value. After that, we get the value set by the previous object, also as
expected.

Third, we invoke the Set_class_variable to set the class variable to

a new value.

33

And finally, we again invoke the Get_class_variable method. As
expected, the value is that which was set in the previous Set_class_variable
method.

Notice that the value set for each instance is reflected as the ‘initial’
value for the next object, regardless of class membership (i.e., Alpha or Beta).
Thus, the class variable is shared in both name and value between all instances

of all classes related by inheritance.

b. Instance Variables

For this experiment we use the classes Alpha and Beta as shown

in Figure 6.
Class Alpha
Superclass: none
Class variable: ivl
Methods: Set_instance_variable
Get_instance_variable
Create
Delete
Class Beta
Superclass: Alpha
Class variable: none
Instance variable: none
Methods: Create
Delete

Figure 6 Class Alpha and Beta Definitions

The files with the specification and implementation of class Alpha
and Beta are the Alpha_spec_IV.ca and Alpha_body_IV.ca and Beta_spec_IV.ca and
Beta_body_IV .ca, respectively. The main program is the program_IV_inher.ca, and

its output is in the file program_IV_inher.script. All files for this section are in
Appendix B, Section B. Objects are created and manipulated in the following

order:

* First instance of class Alpha (object Al)
¢ First instance of class Beta (object B1)
¢ Second instance of class Alpha (object A2)

¢ Second instance of class Beta (object B2)

Methods are invoked on the objects in the following order:

First, objects are declared and created.

Second, we invoke the Get_instance_variable method to get the
initial value of the instance variable for this instance. As can be seen in the
output of this program, this value is null as we did not define any initial or
default value for the instance variable.

Third, we invoke the Set_instance_variable method to set the
instance variable with a given value. For our program this could be any legal

character.

35

Fourth, we invoke the Get_instance_variable method to get the
current value of the instance variable for this instance. As expected, the value
returned is that set by the previous Set_instance_variable method.

Finally, after following these four steps for each instance, we again
send each instance the message Get_instance_variable. As expected, each object

has maintained its own value for the instance variable.

3. Sequential Execution Summary
The class variable, as pointed in Chapter II, depends on how the object-
oriented language being used supports inheritance. One of the following

properties are supported:

e it is shared by all the classes related by inheritance.
* it is duplicated for each new subclass, so changing the value in one class
does not modify the other classes.

However, the class variable in each class is always a shared variable for
that particular class. This is as we observed in the previous experiments. This
means that every instance of the class has access to this variable, and nothing
outside the class can access it without using the appropriate method. Classic-
Ada, however, supports the first notion above as an inherited class variable is

shared by all instances of each class related by inheritance. It is not possible to

have any kind of shared variable between two classes if there is no inheritance
relation®.

Each instance of a class has its own private set of instance variables.
In other words, memory storage is allocated to maintain the internal
representation for each instance of a class. Thus, the instance variable is a shared
variable, but only within an object; more specifically, it is shared between the
methods of the object. The problem arises if we want shared data between only
some methods, but not between others. Once again consider Figure 2. For
example, what if we would like to have a variable that only Method_X in object
A1 can access (i.e., Method_Y and Method_Z cannot access it)? Alternatively,
how could we have a variable shared by Method_X and Method_Y in an instance
(object) such as Al, but not by a Method_Z? This is not possible in any object-
oriented programming language that we know of. This is one concept that we

are investigating in this thesis. Our proposals will be discussed in Chapter IV.

B. CONCURRENT EXECUTION
With the term concurrent execution we mean the ability to have two or more
processes running at the same time; that is, some form of multiprocessing. This

could be a parallel system with several processors (i.e., a multiprocessor), or a

$ It is obvious that we can use some form of a global variable in the program,
but this is not acceptable since the majority of literature on the designing object-
oriented system software advises readers to avoid using this kind of variable.

37

uniprocessor with simulated multiprocessing (via some form of context
switching).
1. Concurrency In A Uniprocessor Environment
It should be realized that in this type of concurrency we do not have
any real concurrent execution, as everything is actually being executed
sequentially.
a. Class Variable

For this experiment we use the same class Alpha as previously
defined and shown in Figure 3. We want to observe the responses of the class
variable in a simulated concurrent environment.

The main program, which creates and manipulates instances of the
class Alpha, is in the file program_CV_conc.ca. Its output is in the file program_CV
_conc.script. All files used in this section are in Appendix C, Section A.

We have four tasks in the main program. Three are responsible for
creating and manipulating objects, and the fourth task is the main procedure
where we just print a simple message. To make sure that all the tasks are eligible

to start running at the same time we give the same priority to each of the task,
(pragma priority (1)). After creating an object, the three tasks apply methods in
the following order:

* Get_class_variable to get the current value of the class variable for the
object.

® Set_class_variable to set the class variable with a new value.
* Get_class_variable again to get the current value of the class variable for the
object.

The main task just prints the word "main" so that we can observe
when this task runs. We expect after the beginning of the main program that the
three tasks run in parallel with the main one. Note that before the main
procedure can end the other tasks in the system have to finish. The output of the

execution program indicates that the tasks executed in the following order:

* main procedure begins

* object A3 created and manipulated
¢ object A2 created and manipulated
* object Al created and manipulated

¢ main procedure ends

The reason that the system chose to run the task manipulating
object A3 before the other tasks is purely arbitrary as the same priority was
specified for all. The results also indicate that the tasks did finish before the main
procedure ended.

As expected, the value of class variable for each instance of for
each task is reflected as the ‘initial’ value for the next object, regardless of which
task created and manipulated the object. Thus, the class variable is shared

between all objects regardless of which task is involved.

39

Notice that in the main program that we put the invocation of the
methods delete at the end of the main procedure (task). This is because we knew
the running order of the tasks (i.e., that the main task finishes after all others)
from previous experiments with all tasks with the same priority. Any statement

after the ‘main’ runs after the finishing of the other tasks.

b. Instance Variable

For this experiment we again use the class Alpha as shown in
Figure 4. We want to illustrate the use of instance variables in a simulated
concurrent environment.

The main program is the program_IV_conc.ca, and its output is in
the file program_IV_conc.script. All the files for this section are in Appendix C,
Section B. We have the same structure as the previous main program
(program_CV _conc.ca) except that we now have an instance variable rather than
a class variable.

The final output was as expected (in accordance with the class

variable results), with the tasks executing in following order:

* main procedure begins

* object A3 created and manipulated
* object A2 created and manipulated
¢ object Al created and manipulated

* main procedure ends

As expected, the value of instance variable is autonomous and
individualistic for each object; that is, it was not shared between the objects of the
class. ."wus, an instance variable in a concurrent environment is still shared only

in name and not by value between objects of the same class.

2. Concurrency in a Multiprocessor Environment
Parallel processing can be divided into two basic architectures: Shared
Resource and Distributed Resource systems, as shown in Figure 7 [INM89].
Shared Resource systems execute the components of a problem on conventional
CPU’s. They are connected by a common bus to shared memory. A Distributed
Resource system executes the parallel parts of a problem among hardware nodes.
Each node runs its own program and includes a CPU with local memory. In our

experiments, each node is a Transputer’.

3. OOP In A Parallel System
In this section we study variables in a multiprocessor environment. All
programs used in this section were developed in Classic-Ada and executed on a

Transputer.

? Transputers are microprocessors built by Inmos, the English semiconductor
manufacturer. A Transputer is a single VLSI device with processor, memory,
and communications links for direct connection to other transputers. They
operate as a stand alone machine, or as a node in a network interconnected via
links. When in a network, each transputer operates on its own using only on chip
memory and programs. Communication from one processor to another occurs
over the links, each of which has a dedicated link interface. The communication
interface is implemented in hardware and does not need the processor for its
control. [INM89]

41

Distributed Resource Systems Shared Resource Systems

-Independent Parallel -Shared Memory

-Dedicated Resource -Shared Buses

CPU CPU| |CPUI||CPU||CPU
«—>

Memory Memory

CPU CPU

Memory Memory M emaor y

Figure 7 Distributed and Shared Resource Systems

42

Before continuing, however, it is first necessary to give a brief

description of the environment.

a. Transputer
A Transputer is a single device with processor, memory, and

communications links for direct connections to other Transputers.

(1) Communication. Link communications run simultaneously with
processor computation to maximize the performance of distributed systems. Each
link carries information bidirectionally on two wires between a pair of transputers
in the computing network. The links provide for direct communication between

processes on neighboring transputers. Communication across the link uses a link

protocol and is accomplished as a sequence of single byte transmissions.

(2) Memory. Transputers are not designed to share memory;
instead, each has its own dedicated memory. The transputer also has a small
amount of on-chip memory for faster access. On the T800 this is four Kbytes of

static RAM. Also, four Gbytes of addressable external memory is possible.

b. Two Objects, Each On Separate Transputers
For this experiment we run each instance on a separate transputer.
Thus, we expect to observe the problems previously discussed about concurrent
environments in distributed systems. For this experiment we use the class Alpha
as shown in Figure 3. All the programs used in this section are contained in

Appendix D. Since we have two transputers, we need to have one program for

43

each of them. Thus, we created two programs named program_CV _trans.ca which
are nearly identical; they differ only in the creation of different objects (one
generates the object A1 and the other object A2). The important issue in each
program was to create one instance (object) and then change the value of the class
variable to see if that change would affect the object residing on the other
transputer. We compiled each program separately, then bind it with each group
of files for each transputer, and then run the program. These two almost identical
files are the Alpha_one.ada and Alpha_two.ada files.

We must point out here that the type of the class variable has been
changed from character to integer as we encountered difficulties in debugging the
configuration for the occam files that we were using for the channels. Using
integers, it was easier to configure the channels, unfortunately, the manuals
[AA90] were not much help in this problem.

Communication in the Classic-Ada programs was achieved via the
implementation package CHANNELS. Both programs made use of the package

COMMON which declared the data types used in channel communication. The

' The transputer architecture directly implements the process model of
concurrency to describe parallel systems naturally and simply. This logical model
is the basis of occam, the first general purpose language with built in support for
both concurrency and communication. Occam is used to program transputers in
a way that closely resembles real-world systems. It can also be easily combined
with conventional high level languages in different ways to create parallel
descriptions of problems. Occam and transputers were designed to complement
each other in a powerful way. Occam is not only based on concepts of
concurrency but also on communication concepts that relate directly to the
transputer links.[INM89]

package COMMON also contained an instantiation of the generic package

CHANNEL_IO which provided channel read and write operations. This package
ensured that each program had a consistent view of the data communicated
between them. Communication between the two programs occurred as follows:

o After the Set_class_variable method in the random.ada file we put the
statement WRITE, so that the value of class_variablel would be put on the
channel; from then on any other transputer existing in the network could
READ the value of this variable.

* After the first Get_class_variable method in the sieve.ada file we put the
statement READ, so that we could get the new value of class_variablel from
the channel.

The output file program_CV_trans.script is also included in Appendix D. It
is important to realize that since transputers do not have shared memory, each
time the value changed it was necessary to send/receive to/from the channel in
order to update the other objects. Thus, the user has to establish the point where
the update of the values takes place. However, this means that the class variable
does not always have the same value in all instances (objects) of a class.

It is shared only by all instances residing on a single transputer until it is

explicitly passed from one transputer to another. Thus, the class variable can no

longer be considered to the shared between all instances of the class.

45

4. Concurrent Execution Summary

As we observe in the sequential execution section, a class variable has
the property of being shared between all objects of the same class and also
between classes related by inheritance.

In our concurrent programs in a uniprocessor environment we have
reinforced the idea that on a class variable shared between all objects, regardless
of which task is involved. What we have actually done is run a multiprocessing
program on a uniprocessor to simulate a shared resource system (i.e., shared
memory), since the opportunity to work on a distributed system with common
memory as presented in Figure 7 did not exist.

In a parallel system the experiment was conducted in a transputer
environment (i.e., a distributed resource system) as depicted in Figure 7. The
class variable has its value shared between all instances of a class on a single
transputer, but not between transputers. Upon reflection this makes sense as
what happened is that we essentially created several different (but duplicate)
classes which just happen to have the same name. That is, the transputer is a
distributed resource system and since the class definition is loaded (duplicated)
on each processor's memory, then it should be expected that changing value of
class variable on one processor should have no affect on its value in another

processor.

IV. METHOD VARIABLES

As we have seen, variables in an object-oriented environment take one of
two forms: they are either class variables or instance variables. Class variables
belong to the class; that is, they are shared by all instances of the class. Instance
variables belong to individual objects. Although there are a few variations, such
as how the class variable is implemented when inherited and various options that
modify the visibility of the variables, these are the only two kinds of variables
available.

It is questionable whether these two types of variables are enough for all
situations. It has been suggested that we may wish to implement methods as
individual processes with their own private state of variables [BN91]. This is one
possible solution to the problem of implementating /modeling software processes
in an OO environment. We may have several processes, each with its own
private set of data, but they all manipulate a common (‘global’) set of data - this
is not possible in any object-oriented programming language that we know of.

Building on the results of the last chapter, we will now propose and
experiment with various forms of ‘method variables’ in an attempt to expand the

number and types of variables available in an object-oriented environment.

47

Each object has a protocol, which is the set of messages that it can respond

to (this is also called the external interface of the object). It is simply the
collection of methods defined for the instances of its class. Each time we send a
message to an instance (object), the method corresponding to the message’s
selector is executed. Typically, methods have formal parameters, and the values
of the message’s argument bind the formal parameters of the method before
executing the method’s code. The state of an object can be retrieved and updated
through its methods. However, the method has no state of its own. According

to [KA90], methods can be categorized as:

* Those methods whose primary purpose is to retrieve or update variables.

* More general methods performing complex computations.

But our question is: can we have methods that perform complex
computations using variables that are not accessible by other methods? That is,
could a method maintain variables for itself only for a single instance (object)?
We will now develop the general idea of an object-oriented language with this
property. More specifically, we want to simulate the ability for a method to have
data that is not accessible by other methods defined for the class. We begin by
defining the concept of method variables, then explore how they are used in both

sequential and concurrent execution environments.

A. METHOD VARIABLES
We now introduce the method variable (mv), which can take the form of either
a method class variable or a method instance variable, depending on which
properties we want to give to the variable. The method instance variable (miv) is
accessible by only a single method of a single object. The method class variable
(mcv) is shared by all objects of a class, but is only accessible by a single method.
Method variables can easily be incorporated into the class definition" (see
Figure 8). Each time we instantiate an object, it has the method variables that are
defined in the class definition for the given methods. Our approach to method
variables follows the general properties of variables in an object-oriented
language. That is, we can divide method variables into two main categories:
* Method variables based on instance variables that are part of the private
data of each object (method instance variables).
® Method variables based on class variables that are shared by every object in
the class (method class variable).
Thus, each method variable inherits the properties of the type of variable where
it is based on.
Figure 8 shows how class definitions with method variables can be
presented in a language independent manner. We use the example of class Alpha

from the last chapter, adding method variables to some of the methods.

Since Classic-Ada class definitions are in two files, the specification and the
body, the method variable will be declared in the body.

49

[Class Alpha

Superclass: none

Class variables: cv

Instance variables: iv

Methods :

Method_X
Method_instance_variables: X_miv1, X_miv2
Method_class_variables: X_mcv
Method_Y
Method_instance_variables: none
Method_class_variables: none
Method_2Z
Method_instance_variables: Z_miv
Method_class_variables: Z_mcv

Figure 8 The Class Definition with Method Variables

The class Alpha has one class variable (cv), one instance variable (iv), and
three methods (Method_X, Method_Y, and Method_Z). Method_X has two
method instance variables (X_mivl and X_miv2) and a method class variable
(X_mcv). Method_Y has no method class variables or method instance variables.
Method_Z has one method instance variable (Z_miv) and one method class

variable (Z_mcv).

1. Method Instance Variables
Method instance variables are based on instance variables. They can be
thought of simply as instance variables that are only accessible by a single
method. In Figure 8, method instance variables are declared along with the
method itself. In our test applications, however, this is not possible. Instead, we

declare them as instance variables that are ‘dedicated’ to the appropriate method

in order to achieve the simulation of the desired properties of the method instance
variable. That is, the instance variables are only used by the appropriate method
as a method instance variable.

The basic idea of a method instance variable though, turns out to be
fairly simple: we keep all the properties of an instance variable, but the variable
is now implemented and maintained at a level lower than normal in an object-
oriented environment - they are now maintained inside the method.

We now have methods with variables that are not accessible by other
methods of the same object of a given class, as can be seen in Figure 9. The
X_mivl and X_miv2 are accessible only from the Method_X, and Z_miv is
accessible only from the Method_Z, for any given instance of class Alpha.

Thus, we can simulate having a variable that is accessible by only a
single method. This variable is not accessible by other methods defined for that
class. Therefore we have succeeded in eliminating the problem of having all
variables accessible by all methods in a given ol :ct. We have also extended the

types of shared and private data in object-oriented environments.

2. Method Class Variables
Method class variables are similar in concept to method instance
variables. However, method class variables are shared in value by a single
method for all instances of a class, whereas method instance variables are not
shared in value. Thus, we have essentially created a class variable that is limited

in accessibility to a single method of the class.In our test implementation, we

51

cv

Object At Object A2 Object A3

iv v v
Method_X Method_X Method_X
X_mivl,X_miv2 X_mivl,X_miv2 X_mivl X _miv2
Method_Y Method_Y Method_Y
Method_Z Method_Z Method_Z

Z_miv Z_miv Z_miv

52

Figure 9 Method Instance Variable Accessibility in Class Alpha

create class variables which correspond to each method class variable that is
defined inside a method. Once again, no actual modifications to the language
itself were undertaken.

We now have methods with variables that are shared by all instances
of a given class. As can be seen in Figure 10, all instances of class Alpha have a
Method_X which share the method class variable X_mcv. Similarly all instances

of class Alpha have a Method_Z which share the method class variable Z_mcv.

cv
Object Al Object A2 Object A3
iv iv iv
Method_X Method_Y
X _mcv
Method_2Z
Z_mcv

Figure 10 Method Class Variable Accessibility in Class Alpha

53

B. SEQUENTIAL EXECUTION
In sequential execution it is relatively easy to examine the responses of
variables as they cannot be accessed by more than one process at a time. We now

examine the use of method variables in a sequential environment.

1. Method Instance Variables

Following the approach used in the last chapter, we now define the
class Alpha as shown in Figure 11. The purpose is to run methods in different
objects using the method instance variables only for the particular method in each
object. We have the methods Method_X, Method_Y, and Method_Z. Method_X
has the method instance variable X_miv, and Method_Y has the method instance
variable Y_miv.

The specification and implementation files of class Alpha are the
Alpha_spec_miv.ca and Alpha_body_miv.ca. All files discussed in this section
contained in Appendix E, Section A. In order to simulate the method instance
variables, we have created instance variables that correspond to the method
instance variables for each method. Thus, each time we use a method for an
object, the method instance variable will still have the last value given to it when
this particular method was used with the object.

The main program file is the program_miv.ca. Our goal here is to
observe the responses of the method instance variables in different methods and

objects of a class. The output of the main procedure of the program is presented

ass Alpha
Superclass: none
Class variables: none
Instance variables: none
Methods:
Method_X
Method class variables: none
Method instance variables: X_miv
Method_Y
Method class variables: none
Method instance variables: Y_miv
Method_Z
Method class variables: none
Method instance variables: none
Create
Method class variables: none
Method instance variables: none
Delete
Method class variables: none
Method instance variables: none

Figure 11 Class Alpha with Method Instance Variables

in the file program_miv.script. In the main procedure we create two instances of
class Alpha, and apply the methods in the order Method_X, Method_Y,
Method_X, Method_Y.

Each time we call a method we get the value of the instance variable
corresponding to the method instance variable for that method. Note that even
though we were able to declare a variable inside the method, this is actually a
temporary variable that only exists while the method is executing. Also note that

there is nothing that keeps other methods from accessing the instance variables

55

maintaining the values of the method instance variables - we are only defining
and testing the concept at this time, not the actual implementation'.

As can be seen in the output, the initial value of the method instance
variables was null, as no default value was given. Once the value of the method
instance variable is set however, that value is still there the next time that the
method is called.

As expected, the values of the method instance variables are in
accordance with the observations made in Chapter III. That is, values of the
method instance variables are not shared by all objects, and each time we access
a method for the same object the mett..«i instance variable has the value given to
it the last time this method for that object was involved. Although there is
nothing in place at this time to keep other methods from accessing the instance
variables maintaining the values of the method instance variables, we have
simulated the ability for each method to maintain its own value for the method
instance variables inside each obiject.

It is reasonable to expect method instance variables to behave similarly
to instance variables when inheritance is considered. That is, if a method with
method instance variables is inherited, then every instance of the subclass will

have that method, each with its own private copy of the method instance variable.

We feel that this is no different from many early object-oriented
programming languages which did not provide for encapsulation of any kind.
Although access to variables from outside the object was not prevented, the basic
concepts were still there.

ass Alpha

Superclass: none
Class variables: none
Instance variables: none
Methods:

Method_X
Method class variables:

Method instance variables:

Method_Y
Method class variables:

Method instance variables:

Method_Z
Method class variables:

Method instance variables:

Create
Method class variables:

Method instance variables:

Delete
Method class variables:

Method instance variables:

[Class Beta
Superclass: none
Class variables: none
Instance variables: none
Methods:
Create

Method class variables:

Method instance variables:

Delete
Method class variables:

Method instance variables:

none
X_miv

none
Y_miv

none
none

none
none

none
none

none
none

none
none

Figure 12 The Classes Definition

Consider classes Alpha and Beta as shown in Figure 12. The class Beta inherits
all variables and methods defined in the class Alpha, and the properties of those

variables and methods. The files of class Beta are the Beta_spec_miv.ca and

57

Beta_body_miv.ca. All files used in this section are contained in Appendix E,
Section B, except for the class Alpha files (which have not changed) that are
contained in Appendix E, Section A.

In this experiment we want to verify that inherited method instance
variables behave as expected. The main program is the Program_miv_inher.ca. and
its output is contained in Program_miv_inher.script. Objects are created and
manipulated in the following order:

¢ First instance of class Alpha (object A1)
* First instance of class Beta (object B1)
* Second instance of class Alpha (object A2)

* Second instance of class Beta (object B2)

We then invoke messages in the order Method_X, Method_Y, Method_X,
Method_Y.

As can be seen in the output of this program, the values of the method
instance variables are not shared by objects and methods. Each time we use a
method in the same instance (object), it has the value given to it the last time this
method was involved. Thus the, method instance variable is inherited properly
by the subclass, keeping the property of not being shared between the methods

of an object.

2. Method Class Variables
To illustrate the use of method class variables, we define the class

Alpha as presented in Figure 13.

IClass Alpha
Superclass: none
Class variables: none
Instance variables: none
Methods:
Method_X
Method class variables: X_mcv
Method instance variables: none
Method_Y
Method class variables: Y_mcv
Method instance variables: none
Method_Z
Create
Method class variables: none
Method instance variables: none
Delete
Method class variables: none
Method instance variables: none

Figure 13 Class Alpha with Method Class Variables

The files with the specification and implementation of class Alpha are
the Alpha_spec_mcv.ca and Alpha_body_mcv.ca. The main program, which creates
instances of the class Alpha and manipulates them, is the file program_mcv.ca, and
the output is in the file program_mcv.script. Our goal here is to observe the value
responses of method class variables through different methods and objects of a
class. The source code of all files discussed in this section are contained in

Appendix F, Section A.

59

In the main procedure, we create two instances of class Alpha and
apply methods in the order Method_X, Method_Y, Method_X, Method_Y. Each
time we call a method, we get the value of the class variable used to implement
of the corresponding method class variable for that method. As with method
instance variables, we are only exploring and defining the concept and are not
concerned with the actual implementation.

As can be seen in the output, the value of the method class variable is
the one given the last time this particular method called, regardless of the object
involved. Thus the value of the method class variable for each method is not
shared between the methods of the object, but is shared between the same
methods of the different instances in the same class.

As with method instance variables, it is reasonable to expect method
class variables to behave similarly to class variables when inheritance is
considered. To demonstrate this, we now define the class Beta as a subclass of
Alpha, as shown in Figure 14.

The main program is the Program_mcv_inher.ca. and its output is
contained in Program_mcv_inher.script. The files of class Beta are the
Beta_spec_mcv.ca and Beta_body_mcv.ca. All files used in this section are contained
in Appendix F, Section B except for the class Alpha files (which have not
changed) that are in Appendix F, Section A. Objects are created and manipulated

in the following order:

lClass Alpha
Superclass: none
Class variables: none
Instance variables: none
Methods:
Method_X
Method class variables:

Method_Y
Method class variables:

Create
Method class variables:

Delete
Method class variables:

IClass Beta
Superclass: Alpha
Class variables: none
Instance variables: none
Methods:
Create
Method class variables:

Delete
Method class variables:

Method instance variables:

Method instance variables:

Method instance variables:

Method instance variables:

Method instance variables:

Method instance variables:

none

Y_mcv
none

none
none

none
none

none
none

none
none

Figure 14 Classes Alpha and Beta Definition

* First instance of class Alpha (object A1)

¢ First instance of class Beta (object B1)

¢ Second instance of class Alpha (object A2)

e Second instance of class Beta (object B2)

61

Methods are then invoked in the order Method_X, Method_Y,
Method_X, Method_Y. Each time we invoke a method we get the corresponding
class variable for that method’s method class variable.

As can be seen in the output, the value of the method class variable is
the one given to it the last time this particular method was called, regardless of
the object involved (or its class). Thus, the value of the method variable for each
method is not shared between the methods of the instance (object), but is shared

between all of the instances of a class and its subclass.

C. CONCURRENT EXECUTION
We will now show that the concept of method variables is also valid in a

concurrent environment.

1. Concurrency In a Uniprocessor Environment
For these experiments we use the class Alpha as previously defined and
shown in Figures 11 and 13. We want to illustrate the use of method class
variables and method instance variables in a simulated concurrent environment,

observing the responses of the variable.

a. Method Instance Variables
The main program, which creates instances of the class Alpha and
manipulates them, is in the file program_miv_conc.ca and the output is in the file

program_miv_conc.script. All files used in this section are in Appendix G, Section

A. We have three tasks in the main program; t1 and t2 which create objects and

send messages that invoke the methods that we want to experiment with, and the
main procedure prints a simple message. To make sure that all the tasks will
start running at the same time, we give the same priority to each task (pragma
priority (1)). Each of the tasks t1 and t2 create an object of class Alpha and we
apply the methods in the order Method_X, Method_Y, Method_X, Method_Y.
In the main task we have printed the word "main"” so that we can
observe when this task runs. After beginning the main program, we expect that
the two tasks t1 and t2 will run in parallel with the main one. Note that before
the main procedure ends, the other tasks must finished first. The final output

indicated that the program executed in the following order:

® main procedure begins
* object2 created and manipulated
* objectl created and manipulated

* main procedure ends

The reason that the program chooses to run the task t2 first is
arbitrary and depends only on the system, since we gave the same priority for all
tasks. The results also reinforce the statement that all other tasks, must finish
before the main procedure ends. As expected, the value of the method instance
variable for each instance and also for 'each task is in accordance with the results

obtained with instance variables in Chapter III.

63

b. Method Class Variables

The main program, which creates instances of the class Alpha and
manipulates them, is in the file program_mcv_conc.ca and the output is in the file
program_mcv_conc.script. All files used in this section are in Appendix G, Section
B. We have three tasks in the main program; t1 and t2 which create objects and
send messages that invoke the methods that we want to experiment with, and the
main procedure prints a simple message. To make sure that all the tasks will
start running at the same time, we give the same priority to each task (pragma
priority (1)). Each of the tasks t1 andt2 create an object of class Alpha and apply
the methods in the order Method_X, Method_Y, Method_X, Method_Y.

In the main task we have printed the word "main" so that we can
observe when this task runs. After beginning the main program, we expect that
the two tasks t1 and t2 will run in parallel with the main one. Note that before
the main procedure ends the system has to have finished all the other tasks. The

final output indicated that the program executed in the following order:

¢ main procedure begins
¢ object2 created and manipulated
* objectl created and manipulated

* main procedure ends

The reason that the program chooses to first run the task t2 first is

arbitrary and depends only on the system, since we gave the same priority for all.

64

The results also reinforce the statement that all other tasks, must finished before
the main procedure ends. As expected, the value of the method class variable for
each instance and also for each task is in accordance with the results obtained

with class variables in Chapter I

2. Concurrency In a Distributed Environment

The use of method variables in a system with distributed resources,
such as a Transputer, is actually similar to sequential execution. This is because
Transputers do not have shared memory. Therefore, each time that the value of
shared variable changes we have to update it through the communication
channels to the other objects, methods, and classes. We would expect that
method class variables and method instance variables would behave exactly as
class variables an instance variables in this type of environment. That is, method
instance variables are private for each object, and method class variables are only

shared by objects residing on a single transputer.

65

V. CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY AND CONCLUSIONS

This thesis began with a survey of the literature which served as the basis
for ideas as to possible answers to our questions of how to have shared data at
different levels within an object-oriented system. It then studied Classic-Ada
programs to build knowledge and gain the experience of working with this
object-oriented programming language in different execution environments.

The Classic-Ada programs served two main purposes. First, to study
various aspects of variables in an object-oriented environment under different
modes of execution. Secondly, to simulate how to implement and maintain both
shared and private data at various levels in an object-oriented environment.

Our suggested solution of a new type of variable, the method variable,
attempts to satisfy the following investigative questions:

1. Is it possible for a single method to have data that is not accessible by
other methods defined for that class?

2. Is it possible for a single method to have data shared between various
instances of a class but not accessible by other methods defined for that
class?

B. RECOMMENDATIONS FOR FUTURE RESEARCH

All of the code developed for this thesis was implemented in Classic-Ada.
Although this is sufficient for a general proof of concept of method variables,
implementation in other object-oriented languages may be worthwhile.

More importantly though, method variables were added to an application,
not to the language itself. That is, there is nothing in the language to prevent one
method from accessing another method’s method variables. Thus, a compiler, or
at least a pre-processor, should be developed to enforce the accessibility of
method variables.

Both method instance variables and method class variables are accessible by
only a single method. It may also be desirable to have variables that are
accessible by more than one method of a class, but not by all of them. Although
this may be useful concept in an object-oriented environment, developing a clear
and concise way of declaring these variables is in need of further research.

We have also not addressed the integrity of shared data in object-oriented
environment. This is especially important in a concurrent or distributed system.
Techniques used in conventional concurrent and distributed systems should be
considered here, as should the sharing of data in database management

systems.

67

APPENDIX A - SEQUENTIAL EXECUTION WITHOUT INHERITANCE

A. CLASS VARIABLE
1. Alpha_spec_CV.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Get_class_variable;
instance method Set_class_variable (temp_variable : in character);
instance method Delete;

end Alpha;

2. Alpha_body_CV.ca

with text_io;
use text_io;

Class body Alpha is
class_variablel : Character;

method Create (new_instance : out Object_id) is
begin
new_instance := INSTANTIATE ;
put_line("in method create");
end Create;

instance method Get_class_variable is
begin
put_line ("The current value of the class_variablel at this object is:");
put(class_variablel);
new_line;
end Get_class_variable;

instance method Set_class_variable (temp_variable : in character) is
begin
pgut_line ("The new value of the class_variablel is set and is");
class_variablel := temp_variable;
put(class_variable1);
new_line;
end Set_class_variable;

instance method Delete is
begin
put_line("Now we delete from the memory this instance of class Alpha");
DESTROY;
end Delete;

end Alvha;

69

3. Program_CV_one.ca
with Alpha;
procedure program_CV_one is

Objectl : Object_id;
Object2 : Object_id;
Object3 : Object_id;

begin

put_line("Here is the begining of the object1");

Object1 := Alpha.Class_object;

send (Object1, Create, new_instance => Objectl);

send (Objectl, Get_class_variable);

send (Object], Set_class_variable, temp_variable => 'X’);
send (Object1, Get_class_variable);

send (Object1, Delete);

put_line("Here is the begining of the object2");

Object2 := Alpha.Class_object;

send (Object2, Create, new_instance => Object2);

send (Object2, Get_class_variable);

send (Object2, Set_class_variable, temp_variable => 'Y’);
send (Object2, Get_class_variable);

send (Object2, Delete);

put_line("Here is the begining of the object3");

Object3 := Alpha.Class_object;

send (Object3, Create, new_instance => Obiject3);

send (Object3, Get_class_variable);

send (Object3, Set_class_variable, temp_variable => 'Z’);
send (Object3, Get_class_variable);

send (Object3, Delete);

end program_CV_one;

70

4. Program_CV_one.script

Here is the beginning of the objectl
in method create
The current value of the class_variable1 at this object is:

The new value of the class_variablel is set and is :

X

The current value of the class_variablel at this object is:
X

Now we delete from the memory this instance of class Alpha

Here is the beginning of the object2

in method create

The current value of the class_variable1 at this object is:
X

The new value of the class_variablel is set and is :

Y

The current value of the class_variablel at this object is:
Y

Now we delete from the memory this instance of class Alpha

Here is the beginning of the object3

in method create

The current value of the class_variablel at this object is:

Y

The new value of the class_variablel is set and is :

V4

The current value of the class_variablel at this object is:

V4

Now we delete from the memory this instance of class Alpha

71

5. Program_CV_two.ca

with Alpha;
| with text_io; use text_io;

procedure program_CV_two is

Obijectl : Object_id;
Object2 : Object_id;
Obiject3 : Object_id;

begin

Object1 := Alpha.Class_object;

send (Object1, Create, new_instance => Object1);

send (Object1, Get_class_variable);

send (Object1, Set_class_variable, temp_variable => 'X’);
send (Obiject1, Get_class_variable);

Object2 := Alpha.Class_object;

send (Object2, Create, new_instance => Object2);

send (Object2, Get_class_variable);

send (Object2, Set_class_variable, temp_variable => 'Y’);
send (Object2, Get_class_variable);

Object3 := Alpha.Class_object;
| send (Object3, Create, new_instance => Object3);
send (Object3, Get_class_variable);
send (Object3, Set_class_variable, temp_variable => 'Z’");
send (Object3, Get_class_variable);

put_line("Now we destroy the objects");
send (Object1, Delete);
send (Object2, Delete);
send (Obiject3, Delete);

end program_CV_two;

6. Program_CV_two.script

Here is the beginning of the object]
in method create
The current value of the class_variablel at this object is:

The new value of the class_variablel is set and is :

X

The current value of the class_variablel at this object is:
X

Here is the beginning of the object2

in method create

The current value of the class_variablel at this object is:
X

The new value of the class_variablel is set and is :

Y

The current value of the class_variablel at this object is:
Y

Here is the beginning of the object3

in method create

The current value of the class_variablel at this object is:
Y

The new value of the class_variablel is set and is :

4

The current value of the class_variablel at this object is:
z

Now we destroy the objects

Now we delete from the memory this instance of class Alpha
Now we delete from the memory this instance of class Alpha
Now we delete from the memory this instance of class Alpha

B. INSTANCE VARIABLE
1. Alpha_spec_IV.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Get_instance_variable;
instance method Set_instance_variable (temp_variable

instance method Delete;

end Alpha;

74

: in character);

2, Alpha_body_IV.ca

with text_io;
use text_io;

Class body Alpha is
instance_variablel : instance Character;

method Create (new_instance : out Object_id) is
begin

new_instance := INSTANTIATE ;

put_line("in method create");
end Create;

instance method Get_instance_variable is

begin
put_line ("The current value of the instance_variablel at this object is:");
put(instance_variablel);
new_line;

end Get_instance_variable;

instance method Set_instance_variable (temp_variable: in character) is
begin
put_line ("The new value of the instance_variablel is set and is :");
instance_variablel := temp_variable;
put(instance_variablel);
new_line;
end Set_instance_variable;

instance method Delete is
begin
put_line("Now we delete from the memory this instance of class Alpha");

DESTROY;
end Delete;

end Alpha;

75

3. Program_IV.ca

with Alpha;
with Beta;
with text_io; use text_io;

procedure program_IV is

Object1 : Object_id;
Object2 : Object_id;
Object3 : Object_id;

begin

put_line("Here is the beginning of the object1");

Objectl := Alpha.Class_object;

send (Objectl, Create, new_instance => Objectl);

send (Objectl, Get_instance_variable);

send (Objectl, Set_instance_variable, temp_variable => 'X’);
send (Objectl, Get_instance_variable);

new_line;

put_line(" ");

new_line;

put_line("Here is the beginning of the object2");

Object2 := Alpha.Class_object;

send (Object2, Create, new_instance => Object2);

send (Object2, Get_instance_variable);

send (Object2, Set_instance_variable, temp_variable => "Y’);
send (Object2, Get_instance_variable);

new_line;

put_line(" ");

new_line;

put_line("Here is the beginning of the object3");

Object3 := Alpha.Class_object;

send (Object3, Create, new_instance => Object3);

send (Object3, Get_instance_variable);

send (Object3, Set_instance_variable, temp_variable => 'Z’);
send (Object3, Get_instance_variable);

put_line(" ")

new_line;

76

put_line("Results");

new_line;

put_line("The value for Al is:");

send (Objectl, Get_instance_variable);
new_line;

put_line("
new_line;
put_line("The value for A2:");

send (Object2, Get_instance_variable);
new_line;

",
’

put_line("
new_line;
put_line("The value for A3:");

send (Object3, Get_instance_variable);
new_line;

put_line("

put_line("Now we destroy the objects");
send (Object1, Delete);
send (Object2, Delete);
send (Object3, Delete);

end program_lV;

4. Program_IV.script

Here is the beginning of the objectl
in method create

The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :
X

The current value of the instance_variablel at this object is:

X

Here is the beginning of the object2
in method create

The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :
Y

The current value of the instance_variablel at this object is:

Y

Here is the beginning of the object3
in method create

The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :
Z

The current value of the instance_variablel at this object is:

Z

Results

The value for Al is:

The current value of the instance_variablel at this object is:

X

78

The value for A2:
The current value of the instance_variablel at this object is:
Y

The value for A3:
The current value of the instance_variablel at this object is:
4

Now we destroy the objects

Now we delete from the memory this instance of class Alpha
Now we delete from the memory this instance of class Alpha
Now we delete from the memory this instance of class Alpha

APPENDIX B - SEQUENTIAL EXECUTION WITH INHERITANCE

A. CLASS VARIABLE
1. Alpha_spec_CV.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Get_class_variable;
instance method Set_class_variable (temp_variable : in character);
instance method Delete;

end Alpha;

2. Alpha_body_CV.ca

with text_io;
use text_io;

Class body Alpha is
class_variablel : Character;

method Create { new_instance : out Object_id) is
begin
new_instance := INSTANTIATE ;
put_line("in method create");
end Create;

instance method Get_class_variable is
begin
put_line ("The current value of the class_variablel at this object is:");
put(class_variablel);
new_line;
end Get_class_variable;

instance method Set_class_variable (temp_variable : in character) is
begin
put_line ("The new value of the class_variablel is set ");
put_line ("and is :");
class_variablel := temp_variable;
put(class_variablel);
new_line;
end Set_class_variable;

instance method Delete is
begin
put_line("Now we delete from the memory this instance of class Alpha");
DESTROY;
end Delete;

end Alpha;

81

3. Beta_spec_CV.ca

class Beta is
superclass Alpha;
method Create (New_Instance
instance method Delete;

end Beta;

: out Object_id);

82

4. Beta_body_CV.ca

with text_io;
use text_io;

Class body Beta is

method Create (new_instance : out Object_id) is
begin
new_instance := INSTANTIATE ;
put_line("in method create”);
end Create;

instance method Delete is
begin
put_line("Now we delete from the memory this instance of class Beta");
send (super. Delete);
DESTROY;
end Delete;

end Beta;

5. Program_CV_inher.ca

with Alpha;
with Beta;
with text_io; use text_io;

procedure program_CV_inher is

ObjectA1 : Object_id;
ObjectA2 : Object_id;
ObijectB1 : Object_id;
ObjectB2 : Object_id;

begin

new_line;

put_line("Here is the beginning of object A1");
new_line;

ObjectA1l := Alpha.Class_object;

send (ObjectAl, Create, new_instance => ObjectAl);
send (ObjectAl, Get_class_variable);

send (ObjectAl, Set_class_variable , temp_variable => 'X’);
send (ObjectAl, Get_class_variable);

new_line;

put_line(" ");
new_line;

put_line("Here is the beginning of object B1");

new_line;

ObjectB1 := Beta.Class_object;

send (ObjectB1, Create, new_instance => ObjectB1);

send (ObjectB1, Get_class_variable);

send (ObjectB1, Set_class_variable , temp_variable => "M’);
send (ObjectB1, Get_class_variable);

new_line;

put_line(" : ")

new_line;

new_line;

put_line("Here is the beginning of object A2");
mew_line;

ObjectA2 := Alpha.Class_object;

send (ObjectA2, Create, new_instance => ObjectA2);
send (ObjectA2, Get_class_variable);

send (ObjectA2, Set_class_variable , temp_variable => 'Y’);
send (ObjectA2, Get_class_variable);

new_line;

put_line(" ");
new_line;

new_line;

put_line("Here is the beginning of object B2");
mew_line;

objectb2 := Beta.Class_object;

send (ObjectB2, Create, new_instance => ObjectB2);
send (ObjectB2, Get_class_variable);

send (ObjectB2, Set_class_variable , temp_variable => 'N’);
send (ObjectB2, Get_class_variable);

new_line;

put_line(" ")
new_line;

put_line("—-——-—muer Total Results ");
new_line;

put_line("The value of Al:");

send (ObjectAl, Get_class_variable);
put_line("The value of A2:");

send (ObjectA2, Get_class_variable);
put_line("The value of BI:");

send (ObjectB1, Get_class_variable);
put_line("The value of B2:");

send (ObjectB2, Get_class_variable);
new_line;

put_line("for A1");
send (ObjectAl, Delete);

put_line("for A2");

send (ObjectA2, Delete);
put_line("for B1");
send (ObjectB1, Delete);

put_line("for B2");
send (ObjectB2, Delete);

end program_CV_inher;

6. Program_CV_inher.script

Here is the beginning of object Al
in method create
The current value of the class_variablel at this object is:

The new value of the class_variablel is set and is :

X

The current value of the class_variablel at this object is:
X

Here is the beginning of object Bl

in method create

The current value of the class_variablel at this object is:
X

The new value of the class_variablel is set and is :

M

The current value of the class_variablel at this object is:
M

Here is the beginning of the object A2

in method create

The current value of the class_variablel at this object is:
M

The new value of the class_variablel is set and is :

Y

The current value of the class_variablel at this object is:
Y

Here is the beginning of object B2

in method create

The current value of the class_variablel at this object is:
Y

The new value of the class_variablel is set and is :

N

The current value of the class_variablel at this object is:
N

87

Total Results

The value of Al:

The current value of the class_variablel at this object is:
N

The value of A2:

The current value of the class_variablel at this object is:
N

The value of BI:

The current value of the class_variablel at this object is:
N

The value of B2:

The current value of the class_variablel at this object is:
N

for Al

Now we delete from the memory this instance of class Alpha
for A2

Now we delete from the memory this instance of class Alpha
for B1

Now we delete from the memory this instance of class Beta
Now we delete from the memory this instance of class Alpha
for B2

Now we delete from the memory this instance of class Beta
Now we delete from the memory this instance of class Alpha

B. INSTANCE VARIABLE
1. Alpha_spec_IV.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Get_instance_variable;
instance method Set_instance_variable (temp_variable : in character);

instance method Delete;

end Alpha;

89

2. Alpha_body_IV.ca

with text_io;
use text_io;

Class body Alpha is
instance_variablel : instance Character;

method Create (new_instance : out Object_id) is
begin
new_instance := INSTANTIATE ;
put_line("in method create");
end Create;

instance method Get_instance_variable is
begin
put_line ("The current value of the instance_variablel at this object is:");
put(instance_variable1);
new_line;
end Get_instance_variable;

instance method Set_instance_variable (temp_variable: in character) is
begin
put_line ("The new value of the instance_variablel is set and is :");
instance_variablel := temp_variable;
put(instance_variable1);
new_line;
end Set_instance_variable;

instance method Delete is
begin
put_line("Now we delete from the memory this instance of class Alpha");
DESTROY;
end Delete;

end Alpha;

3. Beta_spec_IV.ca

class Beta is
superclass Alpha;
method Create (New_Instance : out Object_id);
instance method Delete;

end Beta;

91

4. Beta_body_IV.ca

with text_io;
use text_io;

Class body Beta is

method Create (new_instance : out Object_id) is
begin
new_instance := INSTANTIATE ;
put_line("in method create");
end Create;

instance method Delete is
begin
put_line("Now we delete from the memory this instance of class Beta");
send (super, Delete);
DESTROY;
end Delete;

end Beta;

92

5. Program_IV_inher.ca

with Alpha;
with Beta;
with text_io;
use text_io;

procedure program_IV_inher is

ObjectAl : Object_id;
ObjectA2 : Object_id;
ObjectB1 : Object_id;
ObjectB2 : Object_id;

begin

new_line;

put_line("Here is the beginning of object A1");
new_line;

ObjectAl := Alpha.Class_object;

send (ObjectAl, Create, new_instance => ObjectA1);
send (ObjectAl, Get_instance_variable);

send (ObjectAl, Set_instance_variable, temp_variable => ‘X’);
send (ObjectA1l, Get_instance_variable);

new_line;

put_line(" ");
new_line;

put_line("Here is the beginning of object B1");

ObjectB1 := Beta.Class_object;

send (ObjectB1, Create, new_instance => Object”1);

send (ObjectB1, Get_instance_variable);

send (ObjectB1, Set_instance_variable , temp_variable => ‘M’);
send (ObjectB1, Get_instance_variable);

new_line;

put_line(" ")

new_line;

put_line("Here is the beginning of the object A2");
ObjectA2 := Alpha.Class_object;

send (ObjectA2, Create, new_instance => ObjectA2);
send (ObjectA2, Get_instance_variable);

93

send (ObjectA2, Set_instance_variable , temp_variable => 'Y’);
send (ObjectA2, Get_instance_variable);

new_line;

put_line(" ")

new_line;

put_line("Here is the beginning of object B2");

objectb2 := Beta.Class_object;

send (ObjectB2, Create, new_instance => ObjectB2);

send (ObjectB2, Get_instance_variable);

send (ObjectB2, Set_instance_variable , temp_variable => 'N’);
send (ObjectB2, Get_instance_variable);

new_line;

put_line(" ");

new_line;

put_line("—-————-~Total Results ")
new_line;

put_line("The value of A1l1:");

send (ObjectA1, Get_instance_variable);
put_line("The value of A2:");

send (ObjectA2, Get_instance_variable);
put_line("The value of B1:");

send (ObjectB1, Get_instance_variable);
put_line("The value of B2:");

send (ObjectB2, Get_instance_variable);
new_line;

put_line("for A1");
send (ObjectAl, Delete);

put_line("for A2");
send (ObjectA2, Delete);

put_line("for B1");
send (ObjectB1, Delete);

put_line("for B2");
send (ObjectB2, Delete);

end program_IV_inher;

6. Program_IV_inher.script

Here is the beginning of object Al
in method create
The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :

X

The current value of the instance_variablel at this object is:
X

Here is the beginning of object Bl
in method create
The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :

M

The current value of the instance_variablel at this object is:
M

Here is the beginning of the object A2
in method create
The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :

Y

The current value of the instance_variablel at this object is:
Y

Here is the beginning of object B2
in method create
The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :

N

The current value of the instance_variablel at this object is:
N

95

Total Results

The value of Al:

The current value of the instance_variablel at this object is:
X

The value of A2:

The current value of the instance_variablel at this object is:
Y

The value of Bl:

The current value of the instance_variablel at this object is:
M

The value of B2:

The current value of the instance_variablel at this object is:
N

for Al

Now we delete from the memory this instance of class Alpha
for A2

Now we delete from the memory this instance of class Alpha
for Bl

Now we delete from the memory this instance of clas Beta
Now we delete from the memory this instance of class Alpha
for B2

Now we delete from the memory this instance uf class Beta
Now we delete from the memory this instance of class Alpha

APPENDIX C - CONCURRENCY ON A UNIPROCESSOR

A. CLASS VARIABLE
1. Alpha_spec_CV.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Get_class_variable;
instance method Set_class_variable (temp_variable : in character);
instance method Delete;

end Alpha;

97

2. Alpha_body_CV.ca

with text_io;
use text_io;

Class body Alpha is
class_variablel : Character;

method Create (new_instance : out Object_id) is
begin
new_instance := INSTANTIATE ;
put_line("in method create");
end Create;

instance method Get_class_variable is
begin
put_line ("The current value of the class_variablel at this object is:");
put(class_variablel);
new_line;
end Get_class_variable;

instance method Set_class_variable (temp_variable : in character) is
begin
put_line ("The new value of the class_variablel is set ");
put_line ("and is :");
class_variablel := temp_variablel;
put(class_variablel);
new_line;
end Set_class_variable;

instance method Delete is
begin
put_line("Now we delete from the memory this instance of class Alpha");
DESTROY;
end Delete;

end Alpha;

98

3. Program_CV_conc.ca

with Alpha;
with text_io;
use text_io;

procedure program_CV_conc is
pragma priority (1);

task tl is

pragma priority(1);
end;

task body t1 is
Object1 :Object_id;
begin
put_line("Here is the object A1");
Object1 := Alpha.Class_obiject;
send (Object1, Create, new_instance => Object1);
put_line("in the first object after create");
send (Object1, Get_class_variable);
send (Object1, Set_class_variable, temp_variable =>'X’);
send (Object1, Get_class_variable);
new_line;
put_line(" ");
new_line;
end t1;

task t2 is

pragma priority(1);
end;

task body t2 is
Obiject2 : Object_id;
begin
put_line("Here is the beginning of object A2");
Object2 := Alpha.Class_object;
send (Object2, Create, new_instance => Object2);
put_line("in the A2 object after create");
send (Object2, Get_class_variable);
send (Object2, Set_class_variable, temp_variable=>'Y");

9

send (Object2, Get_class_variable);
new_line;
put_line(" ")
new_line;

end t2;

task t3 is

pragma priority(1);
end;

task body t3 is
Object3 : Object_id;
begin

put_line("Here is the beginning of the A3 object");
Object3 := Alpha.Class_object;
send (Object3, Create, new_instance => Object3);
put_line(“in the third object after create");
send (Object3, Get_class_variable);
send (Object3, Set_class_variable , temp_variable=> 'Z’);
send (Object3, Get_class_variable);
new_line;
put_line(" ");
new_line;

end t3;

begin
put_line("main");
put_line("we are going do delete Object1");
send (Objectl1, Delete);
put_line("we deleted object1");
send (Object2, Delete);
put_line("we deleted object2");
send (Object3, Delete);
put_line("we deleted object3");
end program_CV_conc;

100

4. Program_CV_conc.script

Here is the beginning of the A3 object

in method create

in the third object after create

The current value of the class_variablel at this object is:

The new value of the class_variablel is set and is :

yA

The current value of the class_variablel at this object is:
VA

Here is the beginning of object A2

in method create

in the A2 object after create

The current value of the class_variablel at this object is:
Z

The new value of the class_variablel is set and is :

Y

The current value of the class_variablel at this object is:
Y

Here is the object Al

in method create

in the first object after create

The current value of the class_variablel at this object is:
Y

The new value of the class_variablel is set and is :

X

The current value of the class_variablel at this object is:
X

main

we are going do delete Objectl

Now we delete from the memory this instance of class Alpha
we deleted object1

Now we delete from the memory this instance of class Alpha
we deleted object2

Now we delete from the memory this instance of class Alpha
we deleted object3

101

B. INSTANCE VARIABLE
1. Alpha_spec_IV.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Get_instance_variable;
instance method Set_instance_variable (temp_variable : in character);
instance method Delete;

end Alpha;

102

2. Alpha_body_IV.ca

with text_io;
use text_io;

Class body Alpha is
instance_variablel : instance Character;

method Create (new_instance : out Object_id) is
begin

new_instance := INSTANTIATE ;

put_line("in method create");
end Create;

instance method Get_instance_variable is

begin
put_line ("The current value of the instance_variablel at this object is:");
put(instance_variablel);
new_line;

end Get_instance_variable;

instance method Set_instance_variable (temp_variable: in character) is
begin
put_line ("The new value of the instance_variablel is set and is :");
instance_variablel := temp_variable;
put(instance_variablel);
new_line;
end Set_instance_variable;

instance method Delete is
begin
put_line("Now we delete from the memory this instance of class Alpha");

DESTROY;
end Delete;

end Alpha;

103

3. Program_IV_conc.ca

with Alpha;
with text_io; use text_io;

procedure program_IV_conc is

Object1 :Object_id;
Object2 : Object_id;
Object3 : Object_id;

pragma priority (1);

task t1 is

pragma priority(1);
end;

task body tl1 is
begin
put_line("Here is the object A1");
Object1 := Alpha.Class_object;
send (Object1, Create, new_instance => Object1);
put_line("in the first object after create");
send (Object1, Get_instance_variable);
send (Objectl, Set_instance_variable, temp_variable =>'X’);
send (Object1, Get_instance_variable);
new_line;
put_line(" ");
new_line;
end tl;

task t2 is

pragma priority(1);
end;

task body t2 is
n
put_line("Here is the beginning of object A2");
Object2 := Alpha.Class_obiject;
send (Object2, Create, new_instance => Object2);
put_line("in the A2 object after create");
send (Object2, Get_instance_variable);

104

send (Object2, Set_instance_variable, temp_variable=>'Y’);
send (Object2, Get_instance_variable);
new_line;
put_line(" ");
new_line;
end t2;

task t3 is

pragma priority(1);
end;

task body t3 is

begin
put_line("Here is the beginning of the A3 object");
Object3 := Alpha.Class_object;
send (Object3, Create, new_instance => Object3);
put_line("in the third object after create");
send (Object3, Get_instance_variable);
send (Object3, Set_instance_variable , temp_variable=> 'Z’);
send (Object3, Get_instance_variable);
new_line;
put_line(" ")
new_line;

end t3;

begin
put_line("main");
put_line("we are going do delete Object1");
send (Object1, Delete);
put_line("we deleted object1");
send (Object2, Delete);
put_line("we deleted object2");
send (Object3, Delete);
put_line("we deleted object3");
end program_IV_conc;

105

4. Program_[V_conc.script

Here is the beginning of the A3 object

in method create

in the third object after create

The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :

Z

The current value of the instance_variablel at this object is:
Zz

Here is the beginning of object A2

in method create

in the A2 object after create

The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :

Y

The current value of the instance_variablel at this object is:
Y

Here is the object Al

in method create

in the first object after create

The current value of the instance_variablel at this object is:

The new value of the instance_variablel is set and is :

X

The current value of the instance_variablel at this object is:
X

main

we are going do delete Objectl

Now we delete from the memory this instance of class Alpha
we deleted objectl

Now we delete from the memory this instance of class Alpha
we deleted object2

Now we delete from the memory this instance of class Alpha
we deleted object3

106

APPENDIX D - CONCURRENCY ON A MULTIPROCESSOR

A. TWO TRANSPUTERS WITH CLASS VARIABLE
1. Alpha_spec_CV.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Get_class_variable;
instance method Set_class_variable (class_variablel : in out integer);
instance method Delete;

end Alpha;

107

2. Alpha_body_CV.ca

with text_io;
use text_io;

Class body Alpha is

package integer_inout is new integer_io(integer);
use integer_inout;

class_variablel : Integer;

Value: integer;

method Create (new_instance : out Object_id) is
begin

new_instance := INSTANTIATE ;

put_line("in method create”);
end Create;

instance method Get_class_variable is

begin
put_line ("The current value of the class_variablel at this object is:");
put(class_variablel);
new_line;

end Get_class_variable;

instance method Set_class_variable (class_variablel: in out integer) is
begin

put_line ("The new value of the class_variablel is set ");

put_line ("and is :");

put(class_variablel);

new_line;
end Set_class_variable;

instance method Delete is
in
put_line("Now we delete from the memory this instance of class Alpha");
DESTROY;
end Delete;

end Alpha;

108

3. Program_CV_trans.ca

with Alpha;
use Alpha;

procedure proj is

class_variable:integer;
one : integer:=1;
two : integer:=2;
Objectl : Object_id;
Object2 : Object_id;

begin

Objectl := Alpha.Class_object;

send (Object1, Create, new_instance => Object1);

send (Object1, Get_class_variable);

send (Object1, Set_class_variable, class_variablel => one);
send (Object1, Get_class_variable);

send (Object1, Delete);

Object2 := Alpha.Class_object;
send (Object2, Create, new_instance => Object2);
send (Object2, Get_class_variable);
send (Object2, Set_class_variable, class_variablel => two);
send (Object2, Get_class_variable);
send (Object2, Delete);
end proj;

109

4. Alpha_one.ada

WITH Classic_Executive; USE Classic_Executive;
WITH Unchecked_Deallocation;

WITH Unchecked_Conversion;

WITH System;

with Alpha;

with COMMON;

use COMMON;

with CHANNELS;

procedure Alpha_one is
C : CHANNELS.CHANNEL_REF := CHANNELS.OUT_PARAMETERS (2);

RESULT : int_16;
Object2 : Object_id;
begin
Object2 := Alpha.Class_object;
DECLARE
TYTE Parameter_Type 1S RECORD

New_Instanc- : Object_id;
%l1.D RECORD;

rarameter_Data : Parameter_Type;

BEGIN
send (Object2, 1, Assign (Parameter_Data’ Address));
Object2 := Parameter_Data.New_Instance;

END;

RESULT :=2;

INTEGER_IO.write(C, RESULT);

send (Object2, 4);

end Alpha_one;

110

5. Alpha_two.ada

WITH Classic_Executive; USE Classic_Executive;
WITH Unchecked_Deallocation;

WITH Unchecked_Conversion;

WITH System;

with Alpha;

with text_io;

with COMMON;

use COMMON;

with CHANNELS;

procedure Alpha_two is

C : CHANNELS.CHANNEL_REF := CHANNELS.IN_PARAMETERS (2);

result: int_16;
Object1 : Object_id;

begin
Object1 := Alpha.Class_object;
DECLARE
TYPE Parameter_Type IS RECORD
New_Instance : Object_id;
END RECORD;
Parameter_Data : Parameter_Type;
BEGIN
send (Objectl, 1, Assign (Parameter_Data’ Address));
Objectl := Parameter_Data.New_Instance;
END;
send (Objectl, 2);

send (Objectl, 3);

111

text_io.put("I am going to read");
integer_io.read(C, result);

text_io.put_line(int_16'IMAGE(result));
send (Objectl, 2);
send (Objectl, 4);

end Alpha_two;

112

6. Program_CV_trans.script

in method create
The current value of the class_variablel at this object is:
0
The new value of the class_variablel is set
and is :
1
I am going to read 2
The current value of the class_varaiblel at this object is:
1
Now we delete from the memory this instance of class Alpha

113

APPENDIX E - METHOD INSTANCE VARIABLES

A. CLASSES WITHOUT INHERITANCE RELATION
1. Alpha_spec_miv.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Method_X(temp_variable : in character);
instance method Method_Y(temp_variable : in character);
instance method Method_Z;
instance method Delete;

end Alpha;

114

2. Alpha_body_miv.ca

with text_io;
use text_io;

Class body Alpha is

instance_variablel : instance Character;
X_im :instance Character;
Y_im :instance Character;

method Create (new_instance : out Object_id) is

begin
new_instance := INSTANTIATE ;
put_line("in method create");

end Create;

instance method Method_X(temp_variable: in character) is
X_miv : Character;
begin
X_miv := X_im;
put_line ("The value of X_miv in this method is:");
new_line;
put(X_miv);
new_line;
X_miv := temp_variable;
put_line ("The new value of X_miv in this method is set and is:");
put(X_miv);
new_line;
X_im = X_miv;
end Method_X;

instance method Method_Y(temp_variable: in character) is

Y_miv : Character;

begin
Y _miv:= Y_im;
put_line ("The value of Y_miv in this method is:");
new_line;
put(Y_miv);
new_line;
Y_miv := temp_variable;
put_line ("The new value of Y_miv in this method is set and is:");

115

put(Y_miv);

new_line;

Y_im :=Y_miv;
end Method_Y;

instance method Method_Z is
begin .
new_line;
end Method_Z;
instance method Delete is

DESTROY;
end Delete;

end Alpha;

116

3. Program_miv.ca

with Alpha;
with text_io; use text_io;

procedure program_miv is

Object1 : Object_id;
Object2 : Object_id;

begin
put_line("Here is the beginning of the object1");
Object1 := Alpha.Class_object;
send (Objectl, Create, new_instance => Objectl);
put_line("Here is the Method_X of the object1");
send (Object1, Method_X, temp_variable => 'X’);
put_line(" ");
put_line("Here is the Method_Y of the object1");
send (Object1 Method_Y , temp_variable => 'Y’);
put_line(" ");
put_line("Here is the Method_X of the object1");
send (Objectl, Method_X, temp_variable => 'Z’);
put_line(" ")
put_line("Here is the Method_Y of the object1");
send (Object1,Method_Y , temp_variable => "W’);
put_line(" ")
new_line;

put_line("End of Al
new_line;

put_line("Here is the beginning of the object2");
Object2 := Alpha.Class_object;

send (Object2, Create, new_instance => Object2);
put_line("Here is the Method_X of the object2");
send (Object2, Method_X, temp_variable => 'K’);
put_line(" ");
put_line("Here is the Method_Y of the object2");
send (Object2, Method_Y , temp_variable => 'L’);
put_line(" ");
put_line("Here is the Method_X of the object2");
send (Object2, Method_X, temp_variable => ‘M’);
put_line(" ");

117

put_line("Here is the Method_Y of the object2");

send (Object2,Method_Y , temp_variable => 'N’);
put_line(" ");

new_line;

put_line("End of A2 ");
new_line;

put_line("Now we destroy the objects");
send (Object1, Delete);
send (Object2, Delete);

end program_miv;

118

4. Program_miv.script

Here is the beginning of the object]
in method create

Here is the Method_X of the objectl
The value of X_miv in this method is:

The new value of X_miv in this method is set and is:
X

Here is the Method_Y of the object1
The value of Y_miv in this method is:

The new value of Y_miv in this method is set and is:
Y

Here is the Method_X of the object1

The value of X_miv in this method is:

X

The new value of X_miv in this method is set and is:
Z

Here is the Method_Y of the object]

The value of Y_miv in this method is:

Y

The new value of Y_miv in this method is set and is:
w

End of A1l

Here is the beginning of the object2
in method create

Here is the Method_X of the object2
The value of X_miv in this method is:

The new value of X_miv in this method is set and is:
K

119

Here is the Method_Y of the object2
The value of Y_miv in this method is:

The new value of Y_miv in this method is set and is:
L

Here is the Method_X of the object2

The value of X_miv in this method is:

K

The new value of X_miv in this method is set and is:
M

Here is the Method_Y of the object2

The value of Y_miv in this method is:

L

The new value of Y_miv in this method is set and is:
N

End of A2

120

B. CLASSES WITH INHERITANCE RELATION
1. Beta_spec_miv.ca

class Beta is
superclass Alpha;

method Create (New_Instance : out Object_id);
instance method Delete;

end Beta;

121

2, Beta_body_miv.ca

with text_io;
use text_io;

Class body Beta is

method Create (new_instance : out Object_id) is

begin
new_instance := INSTANTIATE ;
put_line("in method create");

end Create;

instance method Delete is
begin
send (super, Delete);

DESTROY;
end Delete;

end Beta;

122

3. Program_miv_inher.ca

with Alpha;
with Beta;
with text_io; use text_io;

procedure program_miv_inher is

ObjectA1 : Object_id;
ObjectA2 : Object_id;
ObijectB1 : Object_id;
ObjectB2 : Object_id;

begin

put_line("Here is the beginning of the objectA1");
ObjectAl := Alpha.Class_object;

send (ObjectAl, Create, new_instance => ObjectAl);
put_line("Here is the Method_X of the objectA1");
send (ObjectAl, Method_X, temp_variable => ’X’);
put_line(" ");
put_line("Here is the Method_Y of the objectA1");
send (ObjectA1,Method_Y , temp_variable => 'Y’);
put_line(" ")
put_line("Here is the Method_X of the objectA1");
send (ObjectA1, Method_X, ten.p_variable => 'Z’);
put_line(" ");
put_line("Here is the Method_Y of the objectA1");
send (ObjectA1,Method_Y , temp_variable => ‘W’);
put_line(" ");
new_line;

put_line("End of Al ")
new_line;

put_line("Here is the beginning of the objectB1");
ObjectB1 := Alpha.Class_object;

send (ObjectB1, Create, new_instance => ObjectB1);
put_line("Here is the Method_X of the objectB1");
send (ObjectB1, Method_X, temp_variable => ‘X’);
put_line(" ");
put_line("Here is the Method_Y of the objectB1");
send (ObjectB1,Method_Y , temp_variable => 'Y’);
put_line(" ");

123

put_line("Here is the Method_X of the objectB1");
send (ObjectBl, Method_X, temp_variable => ’Z’);
put_line(" ");
put_line("Here is the Method_Y of the objectB1");
send (ObjectB1,Method_Y , temp_variable => ‘W’);
put_line(" ");
new_line;

put_line("End of B1
new_line;

put_line("Here is the beginning of the objectA2");
ObjectA2 := Alpha.Class_object;

send (ObjectAZ, Create, new_instance => ObjectA2);
put_line("Here is the Method_X of the objectA2");
send (ObjectA2, Method_X, temp_variable => ‘K’);
put_line(" ")
put_line("Here is the Method_Y of the objectA2");
send (ObjectA2,Method_Y , temp_variable => ’L'),
put_line("
put_line("Here is the Method_X of the ob)ectAZ")
send (ObjectA2, Method_X, temp_variable => 'M’);
put_line(" ");
put_line("Here is the Method_Y of the objectA2");
send (ObjectA2,Method_Y , temp_variable => 'N’);
put_line(" ");
new_line;
put_line("End of A2

new_line;

put_line("Here is the beginning of the objectB2");
ObjectB2 := Alpha.Class_object;

send (ObjectB2, Create, new_instance => ObjectB2);
put_line("Here is the Method_X of the objectB2");
send (ObjectB2, Method_X, temp_variable => 'K’);
put_line(" ")
put_line("Here is the Method_Y of the objectB2");
cend (ObjectB2,Method_Y , temp_variable => ‘L’);
put_line(" ");
put_line("Here is the Method_X of the objectB2");
send (ObjectB2, Method_X, temp_variable => ‘M’);
put_line(" ");
put_line("Here is the Method_Y of the objectB2");

124

send (ObjectB2,Method_Y , temp_variable => 'N’);
put_line(" ");

new_line;

put_line("End of B2 ");
new_line;

put_line("Now we destroy the objects");
send (ObjectA1, Delete);
send (ObjectA2, Delete);
send (ObjectB1, Delete);
send (ObjectB2, Delete);

end program_miv_inher;

125

4. Program_miv_inher.script

Here is the beginning of the objectAl
in method create

Here is the Method_X of the objectAl
The value of X_miv in this method is:

The new value of X_miv in this method is set and is:
X

Here is the Method_Y of the objectAl
The value of Y_miv in this method is:

The new value of Y_miv in this method is set and is:
Y

Here is the Method_X of the objectAl

The value of X_miv in this method is:

X

The new value of X_miv in this method is set and is:
Z

Here is the Method_Y of the objectAl
The value of Y_miv in this method is:
Y

The new value of Y_miv in this method is set and is:
w

End of Al

Here is the beginning of the objectB1

in method create

Here is the Method_X of the objectB1
The value of X_miv in this method is:

The new value of X_miv in this method is set and is:
X

Here is the Method_Y of the objectB1
The value of Y_miv in this method is:

126

The new value of Y_miv in this method is set and is:
Y

Here is the Method_X of the objectB1

The value of X_miv in this method is:

X

The new value of X_miv in this method is set and is:
Z

Here is the Method_Y of the objectB1

The value of Y_miv in this method is:

Y

The new value of Y_miv in this method is set and is:
\%

End of Bl

Here is the beginning of the objectA2
in method create

Here is the Method_X of the objectA2
The value of X_miv in this method is:

The new value of X_miv in this method is set and is:
K

Here is the Method_Y of the objectA2
The value of Y_miv in this method is:

The new value of X_miv in this method is set and is:
L

Here is the Method_X of the objectA2

The value of X_miv in this method is:

K

The new value of X_miv in this method is set and is:
M

Here is the Method_Y of the objectA2
The value of Y_miv in this method is:
L

127

The new value of X_miv in this method is set and is:
N

End of A2

Here is the beginning of the objectB2
in method create

Here is the Method_X of the objectB2
The value of X_miv in this method is:

The new value of X_miv in this method is set and is:
X

Here is the Method_Y of the objectB2
The value of Y_miv in this method is:

The new value of Y_miv in this method is set and is:
Y

Here is the Method_X of the objectB2
The value of X_miv in this method is:
X

The new value of X_miv in this method is set and is:
Z

Here is the Method_Y of the objectB2

The value of Y_miv in this method is:

Y

The new value of Y_miv in this method is set and is:
w

End of B2

Now we destroy the objects

128

APPENDIX F - METHOD CLASS VARIABLES

A. CLASSES WITHOUT INHERITANCE
1. Alpha_spec_mcv.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Method_X(temp_variable : in character);
instance method Method_Y(temp_variable : in character);
instance method Delete;

end Alpha;

129

2, Alpha_body_mcv.ca

with text_io;
use text_io;

Class body Alpha is

X_mcv : Character;
Y_mcv : Character;

method Create (new_instance : out Object_id) is
begin

new_instance := INSTANTIATE ;

put_line("in method create");
end Create;

instance method Method_X(temp_variable: in character) is
n
put_line ("The value of X_mcv in this method is:");
new_line;
put(X_mcv);
new_line;
X_mcv := temp_variable;
put_line ("The new value of mv in this method is set and is:");
put(X_mcv);
new_line;
end Method_X;

instance method Method_Y(temp_variable: in character) is

put_line ("The value of Y_mcv in this method is:");
new_line;
put(Y_mcv);
new_line;
Y_mcv := temp_variable;
put_line ("The new value of mv in this method is set and is:");
put(Y_mcv);
new_line;
end Method_Y;

130

instance method Delete is

DESTROY;
end Delete;

end Alpha;

131

3. Program_mcv.ca

with Alpha;
with text_io; use text_io;

procedure program_mcv is

Object] : Object_id;
Object2 : Object_id;

begin

put_line("Here is the beginning of the object1");
Object1 := Alpha.Class_object;

send (Object1, Create, new_instance => Object1);
put_line("Here is the Method_X of the object1");
send (Object1l, Method_X, temp_variable => ’X’);
put_line(" ");
put_line("Here is the Method_Y of the object1");
send (Object1 Method_Y , temp_variable => 'Y’)-
put_line("
put_line("Here is the Method_X of the objectl ")

send (Object1l, Method_X, temp_variable => 'Z’);
put_line(" ");
put_line("Here is the Method_Y of the object1");

send (Object1,Method_Y , temp_variable => 'W’);
put_line(" ");
put_line("End of Al ");
new_line;

put_line("Here is the beginning of the object2");
Object2 := Alpha.Class_object;

send (Object2, Create, new_instance => Object2);
put_line("Here is the Method_X of the object2");
send (Object2, Method_X, temp_variable => 'K’);
put_line(" "%
put_line("Here is the Method_Y of the object2");
send (Object2, Method_Y , temp_variable => 'L’);
put_line(" ")
put_line("Here is the Method_X of the object2");
send (Object2, Method_X, temp_variable => 'M’);
put_line(" ");
put_line("Here is the Method_Y of the object2");

132

send (Object2, Method_Y , temp_variable => 'N’);
put_line(" ")
put_line("End of A2 ");
new_line;

put_line("Now we destroy the objects");
send (Objectl, Delete);
send (Object2, Delete);

end program_mcv;

133

4. Program_mcv.script

Here is the beginning of the objectl

in method create

Here is the Method _X of the object]
The value of X_mcv in this method is:

The new value of X_mv in this method is set and is:
X

Here is the Method_Y of the object1
The value of Y_mcv in this method is:

The new value of Y_mcv in this method is set and is:
Y

Here is the Method_X of the objectl

The value of X_mcv in this method is:

X

The new value of X_mcv in this method is set and is:
Z

Here is the Method_Y of the objectl

The value of Y_mcv in this method is:

Y

The new value of Y_mcv in this method is set and is:
w

End of Al

Here is the beginning of the object2

in method create

Here is the Method_X of the object2

The value of X_mcv in this method is:

VA

The new value of X_mcv in this method is set and is:
K

Here is the Method_Y of the object2

The value of Y_mcv in this method is:

w

The new value of Y_mcv in this method is set and is:
L

134

Here is the Method_X of the object2

The value of X_mcv in this method is:

K

The new value of X_mcv in this method is set and is:
M

Here is the Method_Y of the object2

The value of Y_mcv in this method is:

L

The new value of Y_mcv in this method is set and is:
N

End of A2

Now we destroy the objects

135

B. CLASSES WITH INHERITANCE RELATION
1. Beta_spec_mcv.ca

class Beta is
superclass Alpha;
method Create (New_Instance : out Object_id);
instance method Delete;

end Beta;

136

2. Beta_body_mcv.ca

with text_io;
use text_io;

Class body Beta is

method Create (new_instance : out Object_id) is
begin

new_instance := INSTANTIATE ;

put_line("in method create");
end Create;

instance method Delete is
begin
send (super, Delete);
DESTROY;
end Delete;

end Beta;

137

3. Program_mcv_inher.ca

with Alpha;
with Beta;
with text_io;
use text_io;

procedure program_mcv_inher is

ObjectA1l : Object_id;
ObjectA2 : Object_id;
ObjectB1 : Object_id;
ObjectB2 : Object_id;

begin

put_line("Here is the beginning of the objectA1");
ObjectA1l := Alpha.Class_object;

send (ObjectAl, Create, new_instance => ObjectA1);
put_line("Here is the Method_X of the ObjectA1");
send (ObjectA1, Method_X, temp_variable => 'X’);
put_line(" ");
put_line("Here is the Method_Y of the ObjectA1");
send (ObjectA1,Method_Y , temp_variable => 'Y’);
put_line(" ");
put_line("Here is the Method_X of the ObjectA1");
send (ObjectA1, Method_X, temp_variable => 'Z’);
put_line(" ");
put_line("Here is the Method_Y of the ObjectA1");
send (ObjectA1,Method_Y , temp_variable => ‘W’);
put_line(" ");
put_line("End of A1 ");
new_line;

put_line("Here is the beginning of the objectB1");
ObjectB1 := Alpha.Class_object;

send (ObjectBl, Create, new_instance => ObjectB1);
put_line("Here is the Method_X of the ObjectB1");
send (ObjectB1, Method_X, temp_variable => 'X);
put_line(" ");
put_line("Here is the Method_Y of the ObjectB1");
send (ObjectB1,Method_Y , temp_variable => 'Y’);
put_line(" ");

138

put_line("Here is the Method_X of the ObjectB1");
send (ObjectB1, Method_X, temp_variable => 'Z’);
put_line(" ")
put_line("Here is the Method_Y of the ObjectB1");
send (ObjectB1,Method_Y , temp_variable => 'W’);
put_line(" ")
put_line("End of Al

new_line;

put_line("Here is the beginning of the ObjectA2");
ObjectA2 := Alpha.Class_object;

send (ObjectA2, Create, new_instance => ObjectA2);

put_line("Here is the Method_X of the ObjectA2");
send (ObjectA2, Method_X, temp_variable => 'K’);
put_line(")
put_line("Here is the Method_Y of the ObjectA2");
send (ObjectA2,Method_Y , temp_variable => 'L’);
put_line(" ");
put_line("Here is the Method_X of the ObjectA2");
send (ObjectA2, Method_X, temp_variable => ‘M’);
put_line(" ")
put_line("Here is the Method_Y of the ObjectA2");
send (ObjectA2,Method_Y , temp_variable => 'N’);
put_line(" ");

put_line("Here is the beginning of the ObjectB2");
ObjectB2 := Alpha.Class_object;

send (ObjectB2, Create, new_instance => ObjectB2);
put_line("Here is the Method_X of the ObjectB2");
send (ObjectB2, Method_X, temp_variable => ‘'K’);
put_line(" ");
put_line("Here is the Method_Y of the ObjectB2");
send (ObjectB2,Method_Y , temp_variable => ‘L’);
put_line(" ")
put_line("Here is the Method_X of the ObjectB2");
send (ObjectB2, Method_X, temp_variable => ‘M’);
put_line(" Y
put_line("Here is the Method_Y of the ObjectB2");
send (ObjectB2,Method_Y , temp_variable => 'N’);
put_line(" ")

139

");

put_line("Now we destroy the objects");
send (ObjectAl, Delete);
send (ObjectB1, Delete);
send (ObjectA2, Delete);
send (ObjectB2, Delete);

end program_mcv_inher;

140

4. Program_mcv_inher.script

Here is the beginning of the objectAl

in method create

Here is the Method_X of the objectAl
The value of X_mcv in this method is:

The new value of X_mcv in this method is set and is:
X

Here is the Method_Y of the objectAl
The value of Y_mcv in this method is:

The new value of Y_mcv in this method is set and is:
Y

Here is the Method_X of the objectAl

The value of X_mcv in this method is:

X

The new value of X_mcv in this method is set and is:
yA

Here is the Method_Y of the objectAl

The value of Y_mcv in this method is:

Y

The new value of Y_mcv in this method is set and is:
w

End of A1l

Here is the beginning of the objectB1
in method create

Here is the Method_X of the objectB1
The value of X_mcv in this method is:

The new value of X_mcv in this method is set and is:
X

Here is the Method_Y of the objectB1
The value of Y_mcv in this method is:

141

The new value of Y_mcv in this method is set and is:
Y

Here is the Method_X of the objectB1

The value of X_mcv in this method is:

X

The new value of X_mcv in this method is set and is:
VA

Here is the Method_Y of the objectB1

The value of Y_mcv in this method is:

Y

The new value of Y_mcv in this method is set and is:
w

End of Bl

Here is the beginning of the objectA2
in method create

Here is the Method_X of the objectA2
The value of X_mcv in this method is:

The new value of X_mcv in this method is set and is:
K

Here is the Method_Y of the objectA2
The value of Y_mcv in this method is:

The new value of X_mcv in this method is set and is:
L

Here is the Method_X of the objectA2

The value of X_mcv in this method is:

K

The new value of X_mcv in this method is set and is:
M

Here is the Method_Y of the objectA2
The value of Y_mcv in this method is:
L

142

The new value of X_mcv in this method is set and is:

N

End of A2

Here is the beginning of the objectB2

in method create

Here is the Method_X of the objectB2
The value of X_mcv in this method is:

The new value of X_mcv in this method is set and is:

X

Here is the Method_Y of the objectB2
The value of Y_mcv in this method is:

The new value of Y_mcv in this method is set and is:

Y

Here is the Method_X of the objectB2
The value of X_mcv in this method is:
X

The new value of X_mcv in this method is set and is:

y4

Here is the Method_Y of the objectB2
The value of Y_mcv in this method is:
Y

The new value of Y_mcv in this method is set and is:

w

End of B2

Now we destroy the objects

143

APPENDIX G - CONCURRENCY WITH METHOD VARIABLES

A. METHOD CLASS VARIABLE
1. Alpha_spec_CV.ca

class Alpha is
method Create (New_Instance : out Object_id);
instance method Method_X(temp_variable : in character);
instance method Method_Y(temp_variable : in character);
instance method Delete;

end Alpha;

144

2. Alpha_body_CV.ca

with text_io;
use text_io;

Class body Alpha is

X_mcv : Character;
Y_mcv : Character;

methoc Create (new_instance : out Object_id) is
begin

new_instance := INSTANTIATE ;

put_line("in method create");
end Create;

instance method Method_X(temp_variable: in character) is
begin
put_line ("The value of X_mcv in this method is:");
new_line;
put(X_mcv);
new_line;
X_mcv := temp_variable;
put_line ("The new value of mv in this method is set and is:");
put(X_mcev);
new_line;
end Method_X;

instance method Method_Y(temp_variable: in character) is
begin
put_line ("The value of Y_mcv in this method is:");
new_line;
put(Y_mcv);
new_line;
Y_mcv := temp_variable;
put_line ("The new value of mv in this method is set and is:");
put(Y_mcv);
new_line;
end Method_Y;

145

instance method Delete is

DESTROY;
end Delete;

end Alpha; .

146

3. Program_mcv_conc.ca
with Alpha;

with text_io; use text_io;

procedure program_mcv_conc is

pragma priority(1);

task t1 is

pragma priority(1);

end;

task body t1 is

Objectl : Object_id;

begin

put_line("Here is the beginning of the object1");
Object1 := Alpha.Class_object;

send (Object1, Create, new_instance => Objectl);

put_line("Here is the Method_X of the object1");
send (Object1, Method_X, temp_variable => 'X’);
put_line(" ");
put_line("Here is the Method_Y of the object1");
send (Object]1,Method_Y , temp_variable => 'Y’);
put_line(" ");
put_line("Here is the Method_X of the object1");
send (Object1, Method_X, temp_variable => 'Z’);
put_line(" ");
put_line("Here is the Method_Y of the object1");
send (Object1,Method_Y , temp_variable => ‘W’);
put_line(" ");
new_line;

put_line("End of A1
new_line;

end tl1;

task t2 is

pragma priority(1);

end;

147

task body t2 is
Object2 : Object_id;

begin
put_line("Here is the beginning of the object2"); '
Object2 := Alpha.Class_object;
send (Object2, Create, new_instance => Object2);
put_line("Here is the Method_X of the object2");
send (Object2, Method_X, temp_variable => 'K’);
put_line(" ");
put_line("Here is the Method_Y of the object2");
send (Object2,Method_Y , temp_variable => ‘L’);
put_line(" ");
put_line("Here is the Method_X of the object2");
send (Object2, Method_X, temp_variable => 'M’);
put_line(" ")
put_line("Here is the Method_Y of the object2");
send (Object2,Method_Y , temp_variable => 'N’);
put_line(" ")
new_line;
put_line("End of A2 ")
new_line;

end t2;

begin
put_line("main”);

end program_mcv_conc;

148

4. Program_mcv_conc.script

Here is the beginning of the object2
in method create

Here is the Method_X of the object2
The value of X_mcv in this method is:

The new value of mv in this method is set and is:
K

Here is the Method_Y of the object2
The value of Y_mcv in this method is:

The new value of mv in this method is set and is:
L

Here is the Method_X of the object2
The value of X_mcv in this method is:

K
The new value of mv in this method is set and is:
M

Here is the Method_Y of the object2
The value of Y_mcv in this method is:

L
The new value of mv in this method is set and is:
N

End of A2

Here is the beginning of the objectl
in method create

Here is the Method_X of the object1
The value of X_mcv in this method is:

M
The new value of mv in this method is set and is:
X

149

Here is the Method_Y of the objectl
The value of Y_mcv in this method is:

N

The new value of mv in this method is set and is:

Y

Here is the Method_X of the objectl
The value of X_mcv in this method is:

X

The new value of mv in this method is set and is:

Z

Here is the Method_Y of the objectl
The value of Y_mcv in this method is:

Y

The new value of mv in this method is set and is:

w

End of A1l

main

150

B. METHOD INSTANCE VARIABLE
1. Alpha_spec_miv.ca

R class Alpha is
method Create (New_Instance : out Object_id);
instance method Method_X(temp_variable : in character);
instance method Method_Y(temp_variable : in character);
instance method Delete;

end Alpha;

151

2. Alpha_body_miv.ca

with text_io;
use text_io;

Class body Alpha is

instance_variablel : instance Character;
X_im :instance Character;
Y_im :instance Character;

method Create (new_instance : out Object_id) is

begin
new_instance := INSTANTIATE ;
put_line("in method create”);

end Create;

instance method Method_X(temp_variable: in character) is
X_miv : Character;
begin
X_miv := X_im;
put_line ("The value of X_miv in this method is:");
new_line;
put(X_miv);
new_line;
X_miv := temp_variable;
put_line ("The new value of X_miv in this method is set and is:");
put(X_miv);
new_line;
X_im := X_miv;
end Method_X;

instance method Method_Y(temp_variable: in character) is

Y_miv : Character;

begin
Y_miv := Y_im;
put_line ("The value of Y_miv in this method is:");
new_line;
put(Y_miv);
new_line;
Y_miv := temp_variable;
put_line ("The new value of Y_miv in this method is set and is:");

152

put(Y_miv);

new_line;

Y_im :=Y_miv;
end Method_Y;

instance method Delete is

DESTROY;
end Delete;

end Alpha;

153

3. Program_miv_conc.ca

with Alpha;
with text_io; use text_io;

procedure program_miv_conc is
pragma priority(1);

task t1 is
pragma priority(1);

end;

task body t1 is

Object1 : Object_id;

begin
put_line("Here is the beginning of the object1");
Object1 := Alpha.Class_object;
send (Object1, Create, new_instance => Object1);
put_line("Here is the Method_X of the object1");
send (Object1, Method_X, temp_variable => 'X’);
put_line(" ")
put_line("Here is the Method_Y of the object1");
send (Object1 Method_Y , temp_variable => "Y");
put_line(" ");
put_line("Here is the Method_X of the object1");
send (Object1, Method_X, temp_variable => ’Z')
put_line("
put_line("Here is the Method_Y of the objectl ")
send (Object1,Method_Y , temp_variable => 'W’);
put_line(" ");
new_line;
put_line("End of Al ");
new_line;

end tl;

task t2 is
pragma priority(1);
end;

154

task body t2 is

Obiject2 : Object_id;

begin
put_line("Here is the beginning of the object2");
Object2 := Alpha.Class_object;
send (Object2, Create, new_instance => Object2);
put_line("Here is the Method_X of the object2");
send (Object2, Method_X, temp_variable => ’I(’)
put_line("
put_line("Here is the Method_Y of the ob]eth")
send (Object2, Method_Y , temp_variable => ‘L’);
put_line(" ");
put_line("Here is the Method_X of the object2");
send (Object2, Method_X, temp_variable => ‘M’);
put_line(" ")
put_line("Here is the Method_Y of the object2");
send (Object2, Method_Y , temp_variable => 'N’);
put_line(" ");
new_line;
put_line("End of A2

new_line;
end t2;

begin
put_line("main");

end program_miv_conc;

155

4, Program_miv_conc.script

Here is the beginning of the object2
in method create

Here is the Method_X of the object2
The value of X_miv in this method is:

The new value of X_miv in this method is set and is:
K

Here is the Method_Y of the object2
The value of Y_miv in this method is:

The new value of Y_miv in this method is set and is:
L

Here is the Method_X of the object2

The value of X_miv in this method is:

K

The new value of X_miv in this method is set and is:
M

Here is the Method_Y of the object2

The value of Y_miv in this method is:

L

The new value of Y_miv in this method is set and is:
N

End of A2

Here is the beginning of the objectl
in method create

Here is the Method_X of the objectl
The value of X_miv in this method is:

The new value of X_miv in this method is set and is:
X

156

Here is the Method_Y of the objectl
The value of Y_miv in this method is:

The new value of Y_miv in this method is set and is:
Y

Here is the Method_X of the objectl

The value of X_miv in this method is:

X

The new value of X_miv in this method is set and is:
Z

Here is the Method_Y of the objectl
The value of Y_miv in this method is:
Y

The new value of Y_miv in this method is set and is:
w

End of Al

main

157

[AA90]

[Act90]

[Agh86])

[Bar89]

[BT88]

{Boo87]

[Bro89]

(BY87]

[BLW87]

[BN91]

[DW89]

LIST OF REFERENCES

Alsys Ada User Manuals 4.4 System, Alsys Ada Compilation System for the
Transputer, Alsys Ada, May 1990.

The Whitewater Group, Actor User’s Manual, Volume 1 and Volume 2, The
Whitewater Group, Inc., May 1990.

Agha, G., Actors: A model of Concurrent Computation in Distributed Systems,
MIT Press, Cambridge, Mass, 1986.

Barnes, J.G.P., Programming in Ada(3rd Edition) , International Computer
Science Series, Addison-Weley Publishers, ISBN 0-201-17566-5, 1989.

Bal, HEE. and Tanenbaum, A.S., "Distributed Programming with Shared
Data", IEEE Int’l Conf. on Computer Language 1988, pp. 82-91, Miami Beach
FL, October 1988.

Brooch, G., Software Engineering with Ada(2nd Edition), Benjamin
Cummings Publishing Company, Menlo Park CA 1987.

Bronnenberg, W., "POOL and DOOM?", Lecture Notes in Computer Science
365 , pp. 356-373, PARLE'89 vol], Eindhoven, Netherlands, June 1989.

Briot, JP. and Yonezawa A., "Inheritance and Synchro-nization in
Concurrent OOP", Lecture Notes in Computer Science 276 , pp. 32-40,
ECOOQOP’87, Paris, France 1987.

Burns, A., Lister, A.M., and Wellings, A.J., "A Review of Ada Tasking"
Lecture Notes in Computer Science 262 , Springer-Verlag Berlin Heidelberg
1987.

Bymes, RB. and Nelson, M.L, "An Object-Oriented Simulation of
Autonomous Underwater Vehicle" 22nd Annual Pittsburgh Conference on
Modeling and Simulation, Computers, Computer Architectures, Vision,
Microprocessor in Education, pp. 1581-1588, Pittsburgh, PA, May 1991.

Dally, JW. and Wills, D.S., "Universal Mechanisms for Concurrency",

Lecture Notes in Computer Science 365 , pp. 19-33, PARLE'89 vol I,
Eindhoven, Netherlands, June 1989.

158

[DT88]

[dPN91]

[HO87]

[Has90]

[Hor90]

[INM89]

[Kim90]

[KL89]

[Low88]

[Mey88]

[Mic88]

[Nel90a]

[Nel90b]

Danforth, S. and Tominson, C., “Type Theories and Object- Oriented
Programming” Vol 20, No 1 of ACM Computing Surveys, pp. 29-72, March
1988.

de Paula, E.G. and Nelson, M.L., "Designing a Class Hierarchy", Proceedings
of the Technology of Object-Oriented Languages and Systems International
Conference 5 (TOOLS USA '91), pp. 203-218 Santa Barbara, CA, July 1991.

Halbert, D.C. and O’Brien, P.D., "Using Types and Inheritance in Object-
Oriented Programming" Vol 4, No 5 IEEE Software, pp. 71-79, September
1987.

Hastings, A.B., "Distributed Lock Management in a Transaction Processing
Environment" pp. 22-31, IEEE Ninth Symposium on Reliable Distributed
Systems, Hunstsville, Alabama October 1990.

Horn C., "Is Object-Orientation a Good Thing for Distributed Systems?"
Lecture Notes in Computer Science 433 , Springer-Verlag Berlin Heidelberg
1990.

INMOS, The Transputer Handbook, October 1989.

Kim, W., "Object-Oriented Databases: Definition and Research Directions"
Vol 2, No 3 IEEE Transactions on Knowledge and Data Engineering, pp. 327-
341, September 1990.

Kim, W. and Lochovsky, F.H., Object-Oriented Concepts, Databases, and
Applications, ACM Press, Addison-Wesley Publishing, 1989.

Low, C., "A Shared, Persistent Object Store", Lecture Notes in Computer
Science 322 , pp. 391-408, ECOOP'88, Oslo, Norway, August 1988.

Meyer, B., Object-Oriented Software Construction, Prentice Hall
International(UK), Hreartforshire, 1988.

Micallef, J., "Encapsulation, Reusability and Extensibility in Object-Oriented
Programming Languages" Vol 1, No 1, JOOP pp.12-34 April/May 1988.

Naval Postgraduate School Report 52-90-024, An Introduction to Object-
Oriented Programming, by Nelson, M.L., April 1990.

Naval Postgraduate School Report 52-90-025, Object-Oriented Database
Management Systems, by Nelson, M.L., May 1990.

159

[Nel90c]

[Nel91a]

[Nel91b]

[Ng90]

[NMO90]

[NM92]

[NS88]

[OM88]

[RB91]

[Seb89]

[SM88]

[SW87]

[Sor88]

Naval Postgraduate School Report 52-90-026, Concurrent Object-Oriented
Systems, by Nelson, M.L., September 1990.

Nelson, M.L., "An Object-Oriented Tower of Babbel", Vol 2, No 3, OOPS
Messanger pp. 3-11 July 1991.

Nelson, M.L., "Concurrency & Obiject-Oriented Programming" SIGPLAN
pp. 63-72, Vol 26, No 10, October 1991.

Ng, T.N., "The Design and Implementation of a Reliable Distributed
Operating System-ROSE" pp. 2-11, IEEE Ninth Symposium on Reliable
Distributed Systems, Hunstsville, Alabama October 1990.

Nelson, M.L., Moshell,] M., and Orooji, A., "A Relational Object-Oriented
Management Systems” pp. 319-323 International Phoenix Conference on
Computers and Communications (IPCCC’90), March 1990.

Nelson, M.L. and Mota, R., "Object-Oriented Programming in Classic-Ada"
(draft).

Nielsen, K. and Shumate, K., Designing Large Real-Time Systems with Ada,
McGraw-Hill, New York, 1988

Oudshoorn, M. and Marlin, C., "Describing Data Control in Programming
Languages”, IEEE Int’l Conf. on Computer Language 1988, pp. 100-109, Miami
Beach Florida, October 1988.

Rumbaugh,]., Blaha, M., and others, Object-Oriented Modeling and Design,
Prentice Hall, Englewood Cliffs, NJ, 1991.

Sebesta, W.S., Concepts of Programming Languages, The Benjamin/Cummings
Publishing Company, Redwood City, CA 1989.

Shaer, S. and Mellor, S.J., Object-Oriented Systems Analysis: Modeling the
world in data, Englewood Cliffs, NJ, 1988.

Shriver, B. and Wegner, P., Research Directions in Object-Oriented
Programming, MIT Press Series in Computer Systems, Caimbridge, Mass.,
1987.

Sorgaard, P., "Object-Oriented Programming and Computerized Shared

Material”, Lecture Notes in Computer Science 322 , pp. 319-334, ECOOP'88,
Oslo, Norway, August 1988.

160

[SB86]

[SN90]

[Sof89]

[TS90)

[Weg87]

[WP88]

[(WWW90]

Stefik, M. and Bobrow, D.G., "Object-Oriented Programming: Themes and
Variations", pp. 40-62 The Al Magazine Winter 1986.

Steigerwald,R.A. and Nelson, M.L., "Concurrent Programming in Smalltalk-
80" Vol 25, No 28 of SIGPLAN Notices pp.27-39 August 1990.

Software Productivity Solutions, Classic-Ada User's Manual, Software
Productivity Solutions, Indialantic, FL, 1989.

Tully, A. and Shrivastava, 5.K., "Preventing State Divergence in Replicated
Distributed Programs" pp. 104-113, IEEE Ninth Symposium on Reliable
Distributed Systems, Hunstsville, Alabama October 1990.

Wegner, P., "Dimensions of Object-Based Language Design" OOPSLA’87
pp- 168-182, October 1987.

Wiener, RS. and Pinson, L.J., An Introduction to Object-Oriented
Programming and C++, Addison-Wesley Publishing Co, Reading, Mass,
1988.

Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing Object-Oriented
Software, Prentice Hall, Englewood Cliffs, NJ, 1990.

161

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. MAJ Michael L. Nelson, USAF
Computer Science Department, Code CSNe
Naval Postgraduate School
Monterey, CA 93943

4. CDR Gary }J. Hughes, USN
Computer Science Department, Code CSHu
Naval Postgraduate School
Monterey, CA 93943

5. Embassy of Greece
Naval Attache
2228 Massachusettes Ave., N.W.
Washington, D.C. 20008

5. LT Vassilios Theologitis, Hellenic Navy
G. Blessa 11
Papagou 15669
Athens, GREECE

162

~~

